Grain growth and its chemical impact in the first hydrostatic core phase

Author:

Navarro-Almaida D.ORCID,Lebreuilly U.ORCID,Hennebelle P.,Fuente A.,Commerçon B.,Le Gal R.,Wakelam V.,Gerin M.,Riviére-Marichalar P.,Beitia-Antero L.,Ascasibar Y.ORCID

Abstract

Context. The first hydrostatic core (FHSC) phase is a brief stage in the protostellar evolution that is difficult to detect. Its chemical composition determine that of later evolutionary stages. Numerical simulations are the tool of choice to study these objects. Aims. Our goal is to characterize the chemical evolution of gas and dust during the formation of the FHSC. Moreover, we are interested in analyzing, for the first time with 3D magnetohydrodynamic (MHD) simulations, the role of grain growth in its chemistry. Methods. We postprocessed 2 × 105 tracer particles from a RAMSES non-ideal MHD simulation using the codes NAUTILUS and SHARK to follow the chemistry and grain growth throughout the simulation. Results. Gas-phase abundances of most of the C, O, N, and S reservoirs in the hot corino at the end of the simulation match the ice-phase abundances from the prestellar phase. Interstellar complex organic molecules such as methyl formate, acetaldehyde, and formamide are formed during the warm-up process. Grain size in the hot corino (nH > 1011 cm−3) increases forty-fold during the last 30 kyr, with negligible effects on its chemical composition. At moderate densities (1010 < nH < 1011 cm−3) and cool temperatures 15 < T < 50 K, increasing grain sizes delay molecular depletion. At low densities (nH ~ 107 cm−3), grains do not grow significantly. To assess the need to perform chemo-MHD calculations, we compared our results with a two-step model that reproduces well the abundances of C and O reservoirs, but not the N and S reservoirs. Conclusions. The chemical composition of the FHSC is heavily determined by that of the parent prestellar core. Chemo-MHD computations are needed for an accurate prediction of the abundances of the main N and S elemental reservoirs. The impact of grain growth in moderately dense areas delaying depletion permits the use of abundance ratios as grain growth proxies.

Funder

Agencia Estatal de Investigación

Fundación Ramón Areces

European Research Council

Ministerio de Ciencia, Innovación y Universidades

Centre National de la Recherche Scientifique

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gas phase Elemental abundances in Molecular cloudS (GEMS);Astronomy & Astrophysics;2024-08

2. A fast neural emulator for interstellar chemistry;Monthly Notices of the Royal Astronomical Society;2024-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3