Spectroscopic and interferometric signatures of magnetospheric accretion in young stars

Author:

Tessore B.ORCID,Soulain A.ORCID,Pantolmos G.,Bouvier J.,Pinte C.,Perraut K.

Abstract

Aims. We aim to assess the complementarity between spectroscopic and interferometric observations in the characterisation of the inner star-disc interaction region of young stars. Methods. We used the MCFOST code to solve the non-local thermodynamic equilibrium problem of line formation in non-axisymmetric accreting magnetospheres. We computed the Brγ line profile originating from accretion columns for models with different magnetic obliquities. We also derived monochromatic synthetic images of the Brγ line-emitting region across the line profile. This spectral line is a prime diagnostic of magnetospheric accretion in young stars and is accessible with the long baseline near-infrared interferometer GRAVITY installed at the ESO Very Large Telescope Interferometer. Results. We derive Brγ line profiles as a function of rotational phase and compute interferometric observables, visibilities, and phases, from synthetic images. The line profile shape is modulated along the rotational cycle, exhibiting inverse P Cygni profiles at the time the accretion shock faces the observer. The size of the line’s emission region decreases as the magnetic obliquity increases, which is reflected in a lower line flux. We apply interferometric models to the synthetic visibilities in order to derive the size of the line-emitting region. We find the derived interferometric size to be more compact than the actual size of the magnetosphere, ranging from 50 to 90% of the truncation radius. Additionally, we show that the rotation of the non-axisymmetric magnetosphere is recovered from the rotational modulation of the Brγ-to-continuum photo-centre shifts, as measured by the differential phase of interferometric visibilities. Conclusions. Based on the radiative transfer modelling of non-axisymmetric accreting magnetospheres, we show that simultaneous spectroscopic and interferometric measurements provide a unique diagnostic to determine the origin of the Brγ line emitted by young stellar objects and are ideal tools to probe the structure and dynamics of the star-disc interaction region.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3