Three-dimensional, Time-dependent MHD Simulation of Disk–Magnetosphere–Stellar Wind Interaction in a T Tauri, Protoplanetary System

Author:

Cohen OferORCID,Garraffo CeciliaORCID,Drake Jeremy J.ORCID,Monsch KristinaORCID,Sokolov Igor V.ORCID,Alvarado-Gómez Julián D.ORCID,Fraschetti FedericoORCID

Abstract

Abstract We present a three-dimensional, time-dependent MHD simulation of the short-term interaction between a protoplanetary disk and the stellar corona in a T Tauri system. The simulation includes the stellar magnetic field, self-consistent coronal heating and stellar wind acceleration, and a disk rotating at sub-Keplerian velocity to induce accretion. We find that, initially, as the system relaxes from the assumed initial conditions, the inner part of the disk winds around and moves inward and close to the star as expected. However, the self-consistent coronal heating and stellar wind acceleration build up the original state after some time, significantly pushing the disk out beyond 10R . After this initial relaxation period, we do not find clear evidence of a strong, steady accretion flow funneled along coronal field lines, but only weak, sporadic accretion. We produce synthetic coronal X-ray line emission light curves, which show flare-like increases that are not correlated with accretion events nor with heating events. These variations in the line emission flux are the result of compression and expansion due to disk–corona pressure variations. Vertical disk evaporation evolves above and below the disk. However, the disk–stellar wind boundary stays quite stable, and any disk material that reaches the stellar wind region is advected out by the stellar wind.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3