A dusty magnetospheric stream explaining the light curves of the dipper objects: Finding a new inclination threshold to produce dippers

Author:

Nagel Erick,Bouvier JeromeORCID,Duarte Adrián E.

Abstract

Context. The so-called “dippers” are young stellar objects that exhibit dimming episodes in their optical light curves. The common interpretation for the occurrence of these dips is that dusty regions periodically or quasi-periodically cross the line of sight toward the object. Aims. We develop a model where we assume that these regions are located at the intersection of the magnetospheric stream with the disk. The stream is fed by gas and dust coming from the disk. As the material follows the magnetic field lines above the disk plane, it forms an opaque screen that partially blocks the stellar emission. The amount of extinction caused by the material crossing the line of sight depends on the abundance and location of the dust along the stream, which depends on the degree of dust evaporation due to the heating by the star. Methods. We run hydrodynamical simulations of dusty accretion streams to produce synthetic dipper light curves for a sample of low-mass young stars still accreting from their disk according to evolutionary models. We compare the distribution of the light curve amplitudes between the synthetic sample and observed samples of dippers from various star-forming regions. Results. Dust evaporation along the accretion column drives the distribution of photometric amplitudes. Our results suggest that most of the observed dippers correspond to systems seen at high inclination. However, dust survival within accretion columns may also produce dippers at lower inclination, down to about 45°. We find that the dust temperature arising from stellar irradiation should be increased by a factor 1.6 to find consistency between the fraction of dippers our model predicts in star-forming regions and the observed fraction of 20–30%. Conclusions. Transient dust survival in accretion columns appear as an alternative (or complementary) mechanism to inner disk warp occultation in order to account for low-inclination dippers in star-forming regions.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3