Molecule formation in dust-poor irradiated jets

Author:

Tabone B.ORCID,Godard B.,Pineau des Forêts G.,Cabrit S.,van Dishoeck E. F.

Abstract

Context. Recent ALMA observations suggest that the highest velocity part of molecular protostellar jets (≳80 km s−1) are launched from the dust-sublimation regions of the accretion disks (≲0.3 au). However, the formation and survival of molecules in inner protostellar disk winds, in the presence of a harsh far-ultraviolet radiation field and the absence of dust, remains unexplored. Aims. We aim to determine if simple molecules, such as H2, CO, SiO, and H2O, can be synthesized and spared in fast and collimated dust-free disk winds or if a fraction of dust is necessary to explain the observed molecular abundances. Methods. This work is based on a recent version of the Paris-Durham shock code designed to model irradiated environments. Fundamental properties of the dust-free chemistry are investigated from single point models. A laminar 1D disk wind model was then built using a parametric flow geometry. This model includes time-dependent chemistry and the attenuation of the radiation field by gas-phase photoprocesses. The influence of the mass-loss rate of the wind and of the fraction of dust on the synthesis of the molecules and on the attenuation of the radiation field is studied in detail. Results. We show that a small fraction of H2 (≤10−2), which primarily formed through the H route, can efficiently initiate molecule synthesis, such as CO and SiO above TK ~ 800 K. We also propose new gas-phase formation routes of H2 that can operate in strong visible radiation fields, involving CH+ for instance. The attenuation of the radiation field by atomic species (e.g., C, Si, and S) proceeds through continuum self-shielding. This process ensures the efficient formation of CO, OH, SiO, and H2O through neutral–neutral reactions and the survival of these molecules. Class 0 dust-free winds with high mass-loss rates (w ≥ 2 × 10−6 M yr−1) are predicted to be rich in molecules if warm (TK ≥ 800 K). Interestingly, we also predict a steep decrease in the SiO-to-CO abundance ratio with the decline of mass-loss rate, from Class 0 to Class I protostars. The molecular content of disk winds is very sensitive to the presence of dust, and a mass-fraction of surviving dust as small as 10−5 significantly increases the H2O and SiO abundances. Conclusions. Chemistry of high velocity jets is a powerful tool to probe their content in dust and uncover their launching point. Models of internal shocks are required to fully exploit the current (sub)millimeter observations and prepare future JWST observations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3