Abstract
Context. Accretion and ejection dictate the outcomes of star and planet formation processes. The mid-infrared (MIR) wavelength range offers key tracers of processes that have been difficult to detect and spatially resolve in protostars until now.
Aims. We aim to characterize the interplay between accretion and ejection in the low-mass Class I protobinary system TMC1, comprising two young stellar objects: TMC1-W and TMC1-E at a 85 au separation.
Methods. Using the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) observations in 5–28 μm range, we measured the intensities of emission lines of H2, atoms, and ions, for instance, the [Fe II] and [Ne II], and HI recombination lines. We analyzed the spatial distribution of the different species using the MIRI Medium Resolution Spectrometer (MRS) capabilities to spatially resolve emission at 0″.2–0″.7 scales. we compared these results with the corresponding Atacama Large Millimeter/submillimeter Array (ALMA) maps tracing cold gas and dust.
Results. We detected H2 outflow coming from TMC1-E, with no significant H2 emission from TMC1-W. The H2 emission from TMC1-E outflow appears narrow and extends to wider opening angles with decreasing Eup from S(8) to S(1) rotational transitions, indicating the disk wind as its origin. The outflow from TMC1-E protostar shows spatially extended emission lines of [Ne II], [Ne III], [Ar II], and [Ar III], with their line ratios consistent with UV radiation as a source of ionization. With ALMA, we detected an accretion streamer infalling from > 1000 au scales onto the TMC1-E component. The TMC1-W protostar powers a collimated jet, detected with [Fe II] and [Ni II], making it consistent with energetic flow. A much weaker ionized jet is observed from TMC1-E, and both jets appear strikingly parallel to each other, indicating that the disks are co-planar. TMC1-W is associated with strong emission from hydrogen recombination lines, tracing the accretion onto the young star.
Conclusions. MIRI-MRS observations provide an unprecedented view of protostellar accretion and ejection processes on 20 au scales. Observations of a binary Class I protostellar system show that the two processes are clearly intertwined, with accretion from the envelope onto the disk influencing a wide-angle wind ejected on disk scales. Finally, the accretion from the protostellar disk onto the protostar is associated with the source launching a collimated high-velocity jet within the innermost regions of the disk.
Funder
Belgian Federal Science Policy Office
Centre National d’Etudes Spatiales
National Aeronautics and Space Administration
European Space Agency
Danish National Space Center
Canadian Space Agency
Deutsches Zentrum für Luft- und Raumfahrt
Enterprise Ireland
Ministerio De Economiá y Competividad
Nederlandse Onderzoekschool Voor Astronomie
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Science and Technology Facilities Council
Swiss Space Office
UK Space Agency
Deutsche Forschungsgemeinschaft
European Research Council
Danmarks Grundforskningsfond
Science Foundation Ireland
PRIN-INAF
Swedish National Space Agency
Max-Planck-Gesellschaft