A new gamma-ray source unveiled by AGILE in the region of Orion

Author:

Marchili N.,Piano G.,Cardillo M.,Giuliani A.,Molinari S.,Tavani M.

Abstract

Context. Diffuse galactic γ-ray emission is produced by the interaction of cosmic rays (CRs) with the interstellar environment. The study of γ-ray emission is therefore a powerful tool that can be used to investigate the origin of CRs and the processes through which they are accelerated. Aims. Our aim is to gain deeper insights into the nature of γ-ray emission in the region of Orion, which is one of the best studied sites of ongoing star formation, by analysing data from the AGILE satellite. Because of the large amount of interstellar medium (ISM) present in it, the diffuse γ-ray emission expected from the Orion region is relatively high. Its separation from the galactic plane also ensures a very small contribution from foreground or background emission, which makes it an ideal site for studying the processes of particle acceleration in star-forming environments. Methods. The AGILE data are modelled through a template that quantifies the γ-ray diffuse emission expected from atomic and molecular hydrogen. Other sources of emission, such as inverse Compton (IC) scattering in interstellar radiation fields (ISRF) and extragalactic background, can be modelled as an isotropic contribution. Results. Gamma-ray emission exceeding the amount expected by the diffuse emission model is detected with a high level of significance. The main excess is in the high-longitude part of Orion A, which confirms previous results from the Fermi Large Area Telescope. A thorough analysis of this feature suggests a connection between the observed γ-ray emission and the B0.5 Ia star κ Orionis. Conclusions. We present the results of the investigation of γ-ray diffuse galactic emission from the region of Orion. The comparison between modelled and observed emission points towards the existence of higher-than-expected γ-ray flux from a 1° radius region centred in κ Orionis, compatible with the site where stellar wind collides with the ISM. Scattering on dark gas and cosmic-ray acceleration at the shock between the two environments are both discussed as possible explanations, with the latter hypothesis being supported by the hardness of the energy spectrum of the emission. If confirmed, this would be the first direct detection of γ-ray emission from the interaction between ISM and a single star’s stellar wind.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3