Affiliation:
1. Department of Astrophysics, Faculty of Physics and Applied Informatics, University of Łódź, ul. Pomorska 149/153, PL-90-236 Łódź, Poland
Abstract
ABSTRACT
A part of early-type stars is characterized by strong dipole magnetic field that is modified by the outflow of dense wind from the stellar surface. At some distance from the surface (above the Alfvén radius), the wind drives the magnetic field into the reconnection in the equatorial region of the dipole magnetic field. We propose that electrons accelerated in these reconnection regions can be responsible for efficient Comptonization of stellar radiation producing gamma-ray emission. We investigate the propagation of electrons in the equatorial region of the magnetosphere by including their advection with the equatorial wind. The synchrotron and Inverse Compton (IC) spectra are calculated assuming that a significant part of the wind energy is transferred to relativistic electrons. As an example, the parameters of luminous, strongly magnetized star HD 37022 (Θ1 Ori C) are considered. The IC gamma-ray emission is predicted to be detected either in the GeV energy range by the Fermi-LAT telescope or in the sub-TeV energies by the Cherenkov Telescope Array. However, since the stellar winds are often time variable and the magnetic axis can be inclined to the rotational axis of the star, the gamma-ray emission is expected to show variability with the rotational period of the star and, on a longer time-scale, with the stellar circle of the magnetic activity. Those features might serve as tests of the proposed scenario for gamma-ray emission from single, luminous stars.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献