Detection of very-high-energy γ-ray emission from the colliding wind binary η Car with H.E.S.S.

Author:

,Abdalla H.,Adam R.,Aharonian F.,Ait Benkhali F.,Angüner E. O.,Arakawa M.,Arcaro C.,Armand C.,Armstrong T.,Ashkar H.,Backes M.,Barbosa Martins V.,Barnard M.,Becherini Y.,Berge D.,Bernlöhr K.,Blackwell R.,Böttcher M.,Boisson C.,Bolmont J.,Bonnefoy S.,Bregeon J.,Breuhaus M.,Brun F.,Brun P.,Bryan M.,Büchele M.,Bulik T.,Bylund T.,Caroff S.,Carosi A.,Casanova S.,Cerruti M.,Chand T.,Chandra S.,Chen A.,Colafrancesco S.,Cotter G.,Curyło M.,Davids I. D.,Davies J.,Deil C.,Devin J.,deWilt P.,Dirson L.,Djannati-Ataï A.,Dmytriiev A.,Donath A.,Doroshenko V.,Dyks J.,Egberts K.,Eichhorn F.,Emery G.,Ernenwein J.-P.,Eschbach S.,Feijen K.,Fegan S.,Fiasson A.,Fontaine G.,Funk S.,Füßling M.,Gabici S.,Gallant Y. A.,Gaté F.,Giavitto G.,Giunti L.,Glawion D.,Glicenstein J. F.,Gottschall D.,Grondin M.-H.,Hahn J.,Haupt M.,Heinzelmann G.,Henri G.,Hermann G.,Hinton J. A.,Hofmann W.,Hoischen C.,Holch T. L.,Holler M.,Hörbe M.,Horns D.,Huber D.,Iwasaki H.,Jamrozy M.,Jankowsky D.,Jankowsky F.,Jardin-Blicq A.,Joshi V.,Jung-Richardt I.,Kastendieck M. A.,Katarzyński K.,Katsuragawa M.,Katz U.,Khangulyan D.,Khélifi B.,King J.,Klepser S.,Kluźniak W.,Komin Nu.,Kosack K.,Kostunin D.,Kreter M.,Lamanna G.,Lemière A.,Lemoine-Goumard M.,Lenain J.-P.,Leser E.,Levy C.,Lohse T.,Lypova I.,Mackey J.,Majumdar J.,Malyshev D.,Malyshev D.,Marandon V.,Marchegiani P.,Marcowith A.,Mares A.,Martí-Devesa G.,Marx R.,Maurin G.,Meintjes P. J.,Moderski R.,Mohamed M.,Mohrmann L.,Moore C.,Morris P.,Moulin E.,Muller J.,Murach T.,Nakashima S.,Nakashima K.,de Naurois M.,Ndiyavala H.,Niederwanger F.,Niemiec J.,Oakes L.,O’Brien P.,Odaka H.,Ohm S.ORCID,de Ona Wilhelmi E.,Ostrowski M.,Panter M.,Parsons R. D.,Perennes C.,Petrucci P.-O.,Peyaud B.,Piel Q.,Pita S.,Poireau V.,Priyana Noel A.,Prokhorov D. A.,Prokoph H.,Pühlhofer G.,Punch M.,Quirrenbach A.,Raab S.,Rauth R.,Reimer A.,Reimer O.,Remy Q.,Renaud M.,Rieger F.,Rinchiuso L.,Romoli C.,Rowell G.,Rudak B.,Ruiz-Velasco E.,Sahakian V.,Sailer S.,Saito S.,Sanchez D. A.,Santangelo A.,Sasaki M.,Scalici M.,Schlickeiser R.,Schüssler F.,Schulz A.,Schutte H. M.,Schwanke U.,Schwemmer S.,Seglar-Arroyo M.,Senniappan M.,Seyffert A. S.,Shafi N.,Shiningayamwe K.,Simoni R.,Sinha A.,Sol H.,Specovius A.,Spencer S.,Spir-Jacob M.,Stawarz Ł.,Steenkamp R.,Stegmann C.,Steppa C.,Takahashi T.,Tavernier T.,Taylor A. M.,Terrier R.,Tiziani D.,Tluczykont M.,Tomankova L.,Trichard C.,Tsirou M.,Tsuji N.,Tuffs R.,Uchiyama Y.,van der Walt D. J.,van Eldik C.,van Rensburg C.,van Soelen B.,Vasileiadis G.,Veh J.,Venter C.,Vincent P.,Vink J.,Völk H. J.,Vuillaume T.,Wadiasingh Z.,Wagner S. J.,Watson J.,Werner F.,White R.,Wierzcholska A.,Yang R.,Yoneda H.,Zacharias M.,Zanin R.,Zdziarski A. A.,Zech A.,Zorn J.,Żywucka N.

Abstract

Aims. Colliding wind binary systems have long been suspected to be high-energy (HE; 100 MeV < E < 100 GeV) γ-ray emitters. η Car is the most prominent member of this object class and is confirmed to emit phase-locked HE γ rays from hundreds of MeV to ~100 GeV energies. This work aims to search for and characterise the very-high-energy (VHE; E >100 GeV) γ-ray emission from η Car around the last periastron passage in 2014 with the ground-based High Energy Stereoscopic System (H.E.S.S.). Methods. The region around η Car was observed with H.E.S.S. between orbital phase p = 0.78−1.10, with a closer sampling at p ≈ 0.95 and p ≈ 1.10 (assuming a period of 2023 days). Optimised hardware settings as well as adjustments to the data reduction, reconstruction, and signal selection were needed to suppress and take into account the strong, extended, and inhomogeneous night sky background (NSB) in the η Car field of view. Tailored run-wise Monte-Carlo simulations (RWS) were required to accurately treat the additional noise from NSB photons in the instrument response functions. Results. H.E.S.S. detected VHE γ-ray emission from the direction of η Car shortly before and after the minimum in the X-ray light-curve close to periastron. Using the point spread function provided by RWS, the reconstructed signal is point-like and the spectrum is best described by a power law. The overall flux and spectral index in VHE γ rays agree within statistical and systematic errors before and after periastron. The γ-ray spectrum extends up to at least ~400 GeV. This implies a maximum magnetic field in a leptonic scenario in the emission region of 0.5 Gauss. No indication for phase-locked flux variations is detected in the H.E.S.S. data.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probing cosmic ray escape from η Carinae;Astronomy & Astrophysics;2023-11

2. H.E.S.S.: The High Energy Stereoscopic System;Handbook of X-ray and Gamma-ray Astrophysics;2023-09-30

3. Inverse-Compton cooling of thermal plasma in colliding-wind binaries;Monthly Notices of the Royal Astronomical Society;2023-09-18

4. Impact of satellite trails on H.E.S.S. astronomical observations;Astronomy & Astrophysics;2023-09

5. Interpreting the GeV-TeV gamma-ray spectra of local giant molecular clouds using GEANT4 simulation;Journal of Cosmology and Astroparticle Physics;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3