Combining magnetohydrostatic constraints with Stokes profiles inversions

Author:

Borrero J. M.,Pastor Yabar A.,Rempel M.,Ruiz Cobo B.

Abstract

Context. Inversion codes for the polarized radiative transfer equation, when applied to spectropolarimetric observations (i.e., Stokes vector) in spectral lines, can be used to infer the temperature T, line-of-sight velocity vlos, and magnetic field B as a function of the continuum optical-depth τc. However, they do not directly provide the gas pressure Pg or density ρ. In order to obtain these latter parameters, inversion codes rely instead on the assumption of hydrostatic equilibrium (HE) in addition to the equation of state (EOS). Unfortunately, the assumption of HE is rather unrealistic across magnetic field lines, causing estimations of Pg and ρ to be unreliable. This is because the role of the Lorentz force, among other factors, is neglected. Unreliable gas pressure and density also translate into an inaccurate conversion from optical depth τc to geometrical height z. Aims. We aim at improving the determination of the gas pressure and density via the application of magnetohydrostatic (MHS) equilibrium instead of HE. Methods. We develop a method to solve the momentum equation under MHS equilibrium (i.e., taking the Lorentz force into account) in three dimensions. The method is based on the iterative solution of a Poisson-like equation. Considering the gas pressure Pg and density ρ from three-dimensional magnetohydrodynamic (MHD) simulations of sunspots as a benchmark, we compare the results from the application of HE and MHS equilibrium using boundary conditions with different degrees of realism. Employing boundary conditions that can be applied to actual observations, we find that HE retrieves the gas pressure and density with an error smaller than one order of magnitude (compared to the MHD values) in only about 47% of the grid points in the three-dimensional domain. Moreover, the inferred values are within a factor of two of the MHD values in only about 23% of the domain. This translates into an error of about 160 − 200 km in the determination of the z − τc conversion (i.e., Wilson depression). On the other hand, the application of MHS equilibrium with similar boundary conditions allows determination of Pg and ρ with an error smaller than an order of magnitude in 84% of the domain. The inferred values are within a factor of two in more than 55% of the domain. In this latter case, the z − τc conversion is obtained with an accuracy of 30 − 70 km. Inaccuracies are due in equal part to deviations from MHS equilibrium and to inaccuracies in the boundary conditions. Results. Compared to HE, our new method, based on MHS equilibrium, significantly improves the reliability in the determination of the density, gas pressure, and conversion between geometrical height z and continuum optical depth τc. This method could be used in conjunction with the inversion of the radiative transfer equation for polarized light in order to determine the thermodynamic, kinematic, and magnetic parameters of the solar atmosphere.

Funder

Deutsche Forschungsgemeinschaft

Ministerio de Economía, Industria y Competitividad, Gobierno de España

National Science Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference29 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3