Three-body encounters in black hole discs around a supermassive black hole

Author:

Trani A. A.ORCID,Quaini S.,Colpi M.

Abstract

Context. Dynamical encounters of stellar-mass black holes (BHs) in a disc of compact objects around a supermassive BH (SMBH) can accelerate the formation and coalescence of BH binaries. It has been proposed that binary–single encounters among BHs in such discs can lead to an excess of highly eccentric BH mergers. However, previous studies have neglected how the disc velocity dispersion and the SMBH’s tidal field affect the three-body dynamics. Aims. We investigate the outcomes of binary–single encounters considering different values of the disc velocity dispersion, and examine the role of the SMBH’s tidal field. We then demonstrate how their inclusion affects the properties of merging BH binaries. Methods. We performed simulations of four-body encounters (i.e. with the SMBH as the fourth particle) using the highly accurate, regularised code TSUNAMI, which includes post-Newtonian corrections up to order 3.5PN. To isolate the effect of the SMBH’s tidal field, we compared these simulations with those of three-body encounters in isolation. Results. The disc velocity dispersion controls how orbits in the disc are aligned and circular, and determines the relative velocity of the binary–single pair before the encounter. As the velocity dispersion decreases, the eccentricity of post-encounter binaries transitions from thermal to superthermal, and binaries experience enhanced hardening. The transition between these two regimes happens at disc eccentricities and inclinations of order e ∼ i ∼ 10−4. These distinct regimes correspond to a disc dominated by random motions (e ∼ i ≳ 10−4) and one dominated by the Keplerian shear (e ∼ i ≲ 10−4). The effect of the SMBH’s tidal field depends on the velocity dispersion of the disc. When the velocity dispersion is low, the resulting binaries are less eccentric compared to isolated encounters. Conversely, binaries become less eccentric compared to isolated encounters at high velocity dispersion. This also affects the number of BH mergers. Conclusions. The inclusion of the SMBH’s tidal field and the disc velocity dispersion can significantly affect the number of GW mergers, and especially the number of highly eccentric inspirals. These can be up to ∼2 times higher at low velocity dispersion, and ∼12 times lower at high velocity dispersions. The spin–orbit alignment is influenced by the tidal field exclusively at high velocity dispersions, effectively inhibiting the formation of anti-aligned binary BHs. Nonetheless, encounters in random-motion-dominated discs around a SMBH are still more effective in producing GW mergers compared to those occurring in spherically symmetric nuclear star clusters without an SMBH.

Publisher

EDP Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3