Isles of regularity in a sea of chaos amid the gravitational three-body problem

Author:

Trani Alessandro AlbertoORCID,Leigh Nathan W. C.,Boekholt Tjarda C. N.,Portegies Zwart SimonORCID

Abstract

Context. The three-body problem (3BP) poses a longstanding challenge in physics and celestial mechanics. Despite the impossibility of obtaining general analytical solutions, statistical theories have been developed based on the ergodic principle. This assumption is justified by chaos, which is expected to fully mix the accessible phase space of the 3BP. Aims. This study probes the presence of regular (i.e. non-chaotic) trajectories within the 3BP and assesses their impact on statistical escape theories. Methods. Using three-body simulations performed with the accurate, regularized code TSUNAMI, we established criteria for identifying regular trajectories and analysed their impact on statistical outcomes. Results. Our analysis reveals that regular trajectories occupy a significant fraction of the phase space, ranging from 28% to 84% depending on the initial setup, and their outcomes defy the predictions of statistical escape theories. The coexistence of regular and chaotic regions at all scales is characterized by a multi-fractal behaviour. Integration errors manifest as numerical chaos, artificially enhancing the mixing of the phase space and affecting the reliability of individual simulations, yet preserving the statistical correctness of an ensemble of realizations. Conclusions. Our findings underscore the challenges in applying statistical escape theories to astrophysical problems, as they may bias results by excluding the outcome of regular trajectories. This is particularly important in the context of formation scenarios of gravitational wave mergers, where biased estimates of binary eccentricity can significantly impact estimates of coalescence efficiency and detectable eccentricity.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3