On Binary Formation from Three Initially Unbound Bodies

Author:

Atallah DanyORCID,Weatherford Newlin C.ORCID,Trani Alessandro A.ORCID,Rasio Frederic A.ORCID

Abstract

Abstract We explore three-body binary formation (3BBF), the formation of a bound system via gravitational scattering of three initially unbound bodies (3UB), using direct numerical integrations. For the first time, we consider systems with unequal masses, as well as finite-size and post-Newtonian effects. Our analytically derived encounter rates and numerical scattering results reproduce the 3BBF rate predicted by Goodman & Hut for hard binaries in dense star clusters. We find that 3BBF occurs overwhelmingly through nonresonant encounters and that the two most-massive bodies are never the most likely to bind. Instead, 3BBF favors pairing the two least-massive bodies (for wide binaries) or the most- plus least-massive bodies (for hard binaries). 3BBF overwhelmingly favors wide-binary formation with superthermal eccentricities, perhaps helping to explain the eccentric wide binaries observed by Gaia. Hard-binary formation is far rarer, but with a thermal eccentricity distribution. The semimajor axis distribution scales cumulatively as a 3 for hard and slightly wider binaries. Although mergers are rare between black holes when including relativistic effects, direct collisions occur frequently between main-sequence stars—more often than hard 3BBF. Yet, these collisions do not significantly suppress hard 3BBF at the low-velocity dispersions typical of open or globular clusters. Energy dissipation through gravitational radiation leads to a small probability of a bound, hierarchical triple system forming directly from 3UB.

Funder

National Science Foundation

EC ∣ Horizon 2020 Framework Programme

EC ∣ HORIZON EUROPE Framework Programme

NU ∣ Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3