The Plasma β in Quiet Sun Regions: Multi-instrument View

Author:

Rodríguez-Gómez Jenny M.ORCID,Kuckein ChristophORCID,González Manrique Sergio J.ORCID,Saqri Jonas,Veronig AstridORCID,Gömöry PeterORCID,Podladchikova TatianaORCID

Abstract

Abstract A joint campaign of several spaceborne and ground-based observatories, such as the GREGOR solar telescope, the Extreme-ultraviolet Imaging Spectrometer (EIS), and the Interface Region Imaging Spectrograph (Hinode Observing Plan 381, 2019 October 11–22) was conducted to investigate the plasma β in quiet Sun regions. In this work, we focus on 2019 October 13, 17, and 19 to obtain the plasma β at different heights through the solar atmosphere based on multiheight observational data. We obtained temperature, density, and magnetic field estimates from the GREGOR High-resolution Fast Imager, Infrared Spectrograph, Interface Region Imaging Spectrograph, and EIS and complementary data from the Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA). Using observational data and models (e.g., FALC and PFSS), we determined the plasma β in the photosphere, chromosphere, transition region, and corona. The obtained plasma β values lie inside the expected ranges through the solar atmosphere. However, at EIS and AIA coronal heights (from 1.03 to 1.20 R ), plasma β values appear in the limit defined by Gary; such behavior was previously reported by Rodríguez Gómez et al. Additionally, we obtained the plasma β in the solar photosphere at different optical depths from log τ = 1.0 to –2.0. These values decrease with optical depth. This work provides a complete picture of plasma β in quiet Sun regions through the solar atmosphere, which is a prerequisite of a better understanding of the plasma dynamics at the base of the solar corona.

Funder

NASA Goddard Space Flight Center

European Union’s Horizon 2020 research and innovation program

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3