Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU

Author:

Badman Samuel T.ORCID,Bale Stuart D.ORCID,Rouillard Alexis P.,Bowen Trevor A.,Bonnell John W.,Goetz Keith,Harvey Peter R.,MacDowall Robert J.,Malaspina David M.,Pulupa Marc

Abstract

Context. Robustly interpreting sets of in situ spacecraft data of the heliospheric magnetic field (HMF) for the purpose of probing the total unsigned magnetic flux in the heliosphere is critical for constraining global coronal models as well as understanding the large scale structure of the heliosphere itself. The heliospheric flux (ΦH) is expected to be a spatially conserved quantity with a possible secular dependence on the solar cycle and equal to the measured radial component of the HMF weighted by the square of the measurement’s heliographic distance (BRR2). It is also expected to constitute a direct measurement of the total unsigned magnetic flux escaping the corona (Φopen). Previous work indicates that measurements of ΦH exceed the value predicted by standard coronal models (the “open flux problem”). However, the value of the open flux derived from in situ measurements remains uncertain because it depends on the method employed to derive it. Past derivations also pointed towards an increase in ΦH with heliocentric distance, although this may also be related to its method of computation. Aims. In this work, we attempt to determine a more robust estimate of the heliospheric magnetic flux (ΦH) using data from the FIELDS instrument on board Parker Solar Probe (PSP), to analyse how susceptible it is to overestimation and a dependence on time and space, as well as considering how it compares to simple estimates of Φopen from potential field source surface (PFSS) models. Methods. We compared computations of the heliospheric magnetic flux using different methods of data processing on magnetic field data from PSP, STEREO A, and Wind. Measured radial trends in fluctuations and background magnetic structure were used to generate synthetic data to analyse their effect on the estimate of BRR2. The resulting best estimates were computed as a function of time and space and then compared to estimates from PFSS models. Results. Radially varying fluctuations of the HMF vector as well as large-scale variations in the inclination of the Parker spiral angle are shown to have a non-trivial effect on the 1D distributions of BRR2. This causes the standard statistical metrics of the mean and mode (the most probable values) to evolve with radius, independently of the central value about which the vector fluctuates. In particular, the mean systematically underestimates ΦH for R < 0.8 AU and increases close to 1 AU. We attempt to mitigate for this by using the “Parker spiral method” of projecting the vector onto the background Parker spiral direction (which requires vector fluctuations to be evenly distributed about a central value). Even with this method, we find evidence of a small enhancement in flux close to 1 AU. The fraction of field which is locally inverted in a given time interval grows with radial distance from the Sun which remains a possible physical reason for this excess but is essentially negligible at PSP’s perihelia distances where the impact of fluctuations in general is also much reduced. The Parker spiral method (PSM) and most probable values converge close to the Sun. Our derived best estimate for the time interval studied is ~2.5−0.6+0.3 nT AU2. To the extent probed by PSP, no strong dependence on latitude or longitude is apparent, although at 1 AU, the spread of measured values appears to grow at the highest latitudes. The best estimate of the heliospheric flux is significantly larger than estimates from PFSS models studied here, which predict values from 1.2–1.8 nT AU2, depending on the choice of magnetogram or source surface height. Conclusions. Of the methods for computing the heliospheric flux over a wide range of heliocentric distances using only magnetic field data considered in this work, the most robust choice is to use the PSM. The decay of fluctuations and weakening importance of local flux inversions at smaller heliocentric distances indicate that the measurement is most accurate close to the sun and that it is justified for us to consider that ΦH ~ Φopen for these measurements. The determined value is too high to be explained via PFSS models. Contemporary magnetohydrodynamic models with the same photospheric input are unlikely to close this gap. Therefore, the most likely solutions remain in improvements of coronal models, for example, through improved boundary conditions via the direct measurement of the photospheric field in the solar polar regions or through the inclusion of missing physical processes such as time-dependent or non-potential effects, which can produce a contribution to the open flux that is not rooted in obvious coronal holes.

Funder

NASA

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3