Proposed Resolution to the Solar Open Magnetic Flux Problem

Author:

Arge C. NickORCID,Leisner AndrewORCID,Antiochos Spiro K.ORCID,Wallace SamanthaORCID,Henney Carl J.ORCID

Abstract

Abstract The solar magnetic fields emerging from the photosphere into the chromosphere and corona are comprised of a combination of closed (field lines with both ends rooted at the Sun) and open (field lines with only one end at the Sun) fields. Since the early 2000s, the magnitude of total unsigned open magnetic flux estimated by coronal models has been in significant disagreement with in situ spacecraft observations, especially during solar maximum. Estimates of total open unsigned magnetic flux using coronal hole observations (e.g., using extreme ultraviolet or helium (He) I) are in general, in average agreement with the coronal model results and thus show similar disagreements with in situ observations. This paper provides a brief overview of the problem, summarizes the proposed explanations for the discrepancies, and presents results that strongly support the explanation that the discrepancy is due to dynamics at the open-closed boundary. These results are derived from the determination of the total unsigned open magnetic flux, utilizing the Wang–Sheeley–Arge model at a particular spatial resolution and different field-line tracing methods. One of these methods produces excellent agreement with in situ observations. Our results imply that strong magnetic fields in close proximity to active regions and residing near the boundaries of mid-latitude coronal holes are the primary source of the missing open flux. Furthermore, the results outlined here resolve many of the seemingly contradictory facts that have made the open-flux problem so difficult.

Funder

NASA ∣ NASA Headquarters

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3