Radial evolution of the accuracy of ballistic solar wind backmapping

Author:

Dakeyo J.-B.ORCID,Badman S. T.ORCID,Rouillard A. P.ORCID,Réville V.ORCID,Verscharen D.ORCID,Démoulin P.ORCID,Maksimovic M.ORCID

Abstract

Context. Solar wind backmapping is a technique employed to connect in situ measurements of heliospheric plasma structures to their origin near the Sun. The most widely used method is ballistic mapping, which neglects the effects of solar wind acceleration and corotation and instead models the solar wind as a constant radial outflow whose speed is determined by measurements in the heliosphere. This results in plasma parcel streamlines that form an Archimedean spiral (the Parker spiral) when viewed in the solar corotating frame. This simplified approach assumes that the effects of solar wind acceleration and corotation compensate for each other in the deviation of the source longitude. Most backmapping techniques so far considered magnetic connectivity from a heliocentric distance of 1 au to the Sun. Aims. We quantify the angular deviation between different backmapping methods that depends on the location of the radial probe and on the variation in the solar wind speed with radial distance. We assess these differences depending on source longitude and solar wind propagation time. Methods. We estimated backmapping source longitudes and travel times using (1) the ballistic approximation (constant speed), (2) a physically justified method using the empirically constrained acceleration profile Iso-poly, derived from Parker solar wind equations and also a model of solar wind tangential flows that accounts for corotational effects. We compared the differences across mapped heliocentric distances and for different asymptotic solar wind speeds. Results. The ballistic method results in a Carrington longitude of the source with a maximum deviation of 4″ below 3 au compared to the physics-based mapping method taken as reference. However, the travel time especially for the slow solar wind could be underestimated by 1.5 days at 1 au compared to non-constant speed profile. This time latency may lead to an association of incorrect solar source regions with given in situ measurements. Neglecting corotational effects and accounting for acceleration alone causes a large systematic shift in the backmapped source longitude. Conclusions. Incorporating both acceleration and corotational effects leads to a more physics-based representation of the plasma trajectories through the heliosphere compared to the ballistic assumption. This approach accurately assesses the travel time and provides a more realistic estimate of the longitudinal separation between a plasma parcel measured in situ and its source region. Nonetheless, it requires knowledge of the radial density and Alfvén speed profiles to compute the tangential flow. Therefore, we propose a compromise for computing the source longitude that employs the commonly used ballistic approach and the travel times computed from the derived radial acceleration speed profile. Moreover, we conclude that this approach remains valid at all radial distances we studied and is not limited to data obtained at 1 au.

Funder

Centre National de la Recherche Scientifique

ERC slow source

International Space Science Institute

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3