Automated approach to measure stellar inclinations: validation through large-scale measurements on the red giant branch

Author:

Gehan C.ORCID,Mosser B.,Michel E.,Cunha M. S.

Abstract

Context. Measuring stellar inclinations is fundamental to understanding planetary formation and dynamics as well as the physical conditions during star formation. Oscillation spectra of red giant stars exhibit mixed modes that have both a gravity component from the radiative interior and a pressure component from the convective envelope. Gravity-dominated (g-m) mixed modes split by rotation are well separated inside frequency spectra, allowing accurate measurement of stellar inclinations. Aims. We aim to develop an automated and general approach to measuring stellar inclinations that can be applied to any solar-type pulsator for which oscillation modes are identified. We also aim to validate this approach using red giant branch stars observed by Kepler. Methods. Stellar inclination impacts the visibility of oscillation modes with azimuthal orders m = { − 1, 0, +1}. We used the mean height-to-background ratio of dipole mixed modes with different azimuthal orders to measure stellar inclinations. We recovered the underlying statistical distribution of inclinations in an unbiased way using a probability density function for the stellar inclination angle. Results. We derive stellar inclination measurements for 1139 stars on the red giant branch for which Gehan et al. (2018, A&A, 616, A24) identified the azimuthal order of dipole g-m mixed modes. Raw measured inclinations exhibit strong deviation with respect to isotropy which is expected for random inclinations over the sky. When taking uncertainties into account, the reconstructed distribution of inclinations actually follows the expected isotropic distribution of the rotational axis. Conclusions. This work highlights the biases that affect inclination measurements and provides a way to infer their underlying statistical distribution. When a star is seen either pole on or equator on, measurements are challenging and result in a biased distribution. Correcting biases that appear in low- and high-inclination regimes allows us to recover the underlying inclination distribution.

Funder

FCT

FEDER

FCT/MCTES

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3