Photometric determination of rotation axis inclination, rotation rate, and mass of rapidly rotating intermediate-mass stars

Author:

Lazzarotto Axel,Hui-Bon-Hoa Alain,Rieutord Michel

Abstract

Context. Intermediate-mass stars are often fast rotators, and hence are centrifugally flattened and notably affected by gravity darkening. To analyse this kind of stars properly, one must resort to 2D models to compute the visible radiative flux and to take the geometrical effect of the star inclination into account. Aims. Assuming a given stellar age and chemical composition, our aim is to derive the mass and rotation rates of main sequence fast rotating stars, along with their inclination, from photometric quantities influenced by gravity darkening. Methods. We chose three observables that vary with mass, rotation, and inclination: the temperature derived by the infrared flux method TIRFM, the Strömgren c1 index, and a second index c2 built in the same way as the c1 index, but sensitive to the UV side of the Balmer jump. These observables are computed from synthetic spectra produced with the PHOENIX code and rely on a 2D stellar structure from the ESTER code. These quantities are computed for a grid of models in the range 2–7 M, and rotation rates from 30% to 80% of the critical rate. Then, for any triplet (TIRFM, c1, c2), we try to retrieve the mass, rotation rate, and inclination using a Levenberg-Marquardt scheme, after a selection step to find the most suitable starting models. Results. Hare-and-hound tests showed that our algorithm can recover the mass, rotation rate, and inclination with a good accuracy. The difference between input and retrieved parameters is negligible for models lying on the grid and is less than a few percent otherwise. An application to the real case of Vega showed that the u filter is located in a spectral region where the modelled and observed spectra are discrepant, and led us to define a new filter. Using this new filter and subsequent index, the Vega parameters are also retrieved with satisfactory accuracy. Conclusions. This work opens the possibility to determine the fundamental parameters of rapidly rotating early-type stars from photometric space observations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3