Kiloparsec view of a typical star-forming galaxy when the Universe was ∼1 Gyr old

Author:

Herrera-Camus R.ORCID,Förster Schreiber N.,Genzel R.,Tacconi L.,Bolatto A.,Davies R. L.,Fisher D.,Lutz D.,Naab T.,Shimizu T.,Tadaki K.,Übler H.

Abstract

We present new Atacama Large Millimeter/Submillimeter Array observations of the [C II] 158 μm transition and the dust continuum in HZ4, a typical star-forming galaxy when the Universe was only ∼1 Gyr old (z ≈ 5.5). Our high ≈0.3″ spatial resolution allows us to study the relationships between [C II] line emission, star formation rate, and far-infrared emission on spatial scales of ∼2 kpc. In the central ∼4 kpc of HZ4, the [C II]/FIR is ∼3 × 10−3 on global scales as well as on spatially resolved scales of ∼2 kpc, comparable to the ratio observed in local moderate starburst galaxies such as M 82 or M 83. For the first time in an individual normal galaxy at this redshift, we find evidence for outflowing gas from the central star-forming region in the direction of the minor axis of the galaxy. The projected velocity of the outflow is ∼400 km s−1, and the neutral gas-mass outflow rate is ∼3 − 6 times higher than the star formation rate in the central region. Finally, we detect a diffuse component of [C II] emission, or [C II] halo, that extends beyond the star-forming disk and has a diameter of ∼12 kpc. The outflow, which has a velocity approximately half of the escape velocity of the system, most likely partly fuels the [C II] extended emission. Together with the kinematic analysis of HZ4 (presented in a forthcoming paper), the analysis supports the hypothesis that HZ4 is a typical star-forming disk at z ∼ 5 with interstellar medium conditions similar to present-day galaxies forming stars at a similar level, driving a galactic outflow that may already play a role in its evolution.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3