Study of the ∼50 kpc circumgalactic environment around the merger system J2057–0030 at z ∼ 4.6 using ALMA

Author:

Fuentealba-Fuentes M.ORCID,Lira P.ORCID,Díaz-Santos T.ORCID,Trakhtenbrot B.ORCID,Netzer H.ORCID,Videla L.

Abstract

We present ALMA band-7 observations of J2057−0030, a multi-component merger system at z ∼ 4.68 spanning at least 50 kpc in size, using the [CII] λ157.74 μm line and underlying far-infrared (FIR) continuum. We find two main components, the quasar (or QSO) and a dusty star-forming galaxy (DSFG), both detected in [CII] and continuum emission as well as multiple neighboring clumps detected only in [CII]. Three of these clumps form a (tidal) tail that extends from the QSO in a straight direction to the west, covering a projected distance of ∼10 kpc. This perturbed morphology, added to a spatial distance of ∼20 kpc and a velocity offset of Δv = 68 km s−1 between the QSO and the DSFG, strongly supports a merging scenario. By fitting a spectral energy distribution model to the continuum data, we estimate star formation rates of ≈402 M yr−1 for the QSO host and ≈244 M yr−1 for the DSFG, which locate them on or close to the main sequence of star-forming galaxies. The J2057−0030 QSO was selected for being one of the brightest unobscured quasars at its redshift while presenting a rather modest star formation rate. Based on a commonly accepted paradigm regarding the formation of quasars, this result is expected for a quasar that has already passed an obscured phase of rapid star formation during a major merger. However, we see that the merger event in this system is far from being finished, and it is rather likely somewhere between the first pericenter and subsequent close passages. This is presumably another case of a high-z quasar residing in a high-density environment with a companion obscured galaxy.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3