HYACINTH: HYdrogen And Carbon chemistry in the INTerstellar medium in Hydro simulations

Author:

Khatri PrachiORCID,Porciani Cristiano,Romano-Díaz Emilio,Seifried Daniel,Schäbe Alexander

Abstract

Aims. We present a new sub-grid model, HYACINTH – HYdrogen And Carbon chemistry in the INTerstellar medium in Hydro simulations – for computing the non-equilibrium abundances of H2 and its carbon-based tracers, namely CO, C, and C+, in cosmological simulations of galaxy formation. Methods. The model accounts for the unresolved density structure in simulations using a variable probability distribution function of sub-grid densities and a temperature-density relation. Included is a simplified chemical network that has been tailored for hydrogen and carbon chemistry within molecular clouds and easily integrated into large-scale simulations with minimal computational overhead. As an example, we applied HYACINTH to a simulated galaxy at redshift z ~ 2.5 in post-processing and compared the resulting abundances with observations. Results. The chemical predictions from HYACINTH are in reasonable agreement with high-resolution molecular-cloud simulations at different metallicities. By post-processing a galaxy simulation with HYACINTH, we reproduced the H I − H2 transition as a function of the hydrogen column density NH for both Milky-Way-like and Large-Magellanic-Cloud-like conditions. We also matched the NCO versus NH2 relation inferred from absorption measurements towards Milky-Way molecular clouds, although most of our post-processed regions occupy the same region as (optically) dark molecular clouds in the NCONH2 plane. Column density maps reveal that CO is concentrated in the peaks of the H2 distribution, while atomic carbon more broadly traces the bulk of H2 in our post-processed galaxy. Based on both the column density maps and the surface density profiles oŕ the different gas species in the post-processed galaxy, we find that C+ maintains a substantially high surŕace density out to ~10 kpc as opposed to other components that exhibit a higher central concentration. This is similar to the extended [C II] emission ŕound in some recent observations at high redshifts.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3