Low thermal conductivity of the superfast rotator (499998) 2011 PT

Author:

Fenucci MarcoORCID,Novaković Bojan,Vokrouhlický David,Weryk Robert J.

Abstract

Context. Asteroids with a diameter of up to a few dozen meters may spin very fast and complete an entire rotation within a few minutes. These small and fast-rotating bodies are thought to be monolithic objects because the gravitational force due to their small size is not strong enough to counteract the strong centripetal force caused by the fast rotation. This argument means that the rubble-pile structure is not feasible for these objects. Additionally, it is not clear whether the fast spin prevents dust and small particles (regolith) from being kept on their surface. Aims. We develop a model for constraining the thermal conductivity of the surface of the small, fast-rotating near-Earth asteroids. This model may suggest whether regolith is likely present on these objects. Methods. Our approach is based on the comparison of the measured Yarkovsky drift and a predicted value using a theoretical model that depends on the orbital, physical and thermal parameters of the object. The necessary parameters are either deduced from statistical distribution derived for near-Earth asteroids population or determined from observations with associated uncertainty. With this information, we performed Monte Carlo simulations and produced a probability density distribution for the thermal conductivity. Results. Applying our model to the superfast rotator asteroid (499998) 2011 PT, we find that the measured Yarkovsky drift can only be achieved when the thermal conductivity K of the surface is low. The resulting probability density function for the conductivity is bimodal, with two most likely values being around 0.0001 and 0.005 W m−1 K−1. Based on this, we find that the probability that K is lower than 0.1 W m−1 K−1 is at least 95%. This low thermal conductivity might indicate that the surface of 2011 PT is covered with a thermal insulating layer, composed of a regolith-like material similar to lunar dust.

Funder

European Union H2020 MSCA-ITN Stardust-R

Czech Science Foundation

NASA SSO Near Earth Object Observations Program

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3