An automated procedure for the detection of the Yarkovsky effect and results from the ESA NEO Coordination Centre

Author:

Fenucci MarcoORCID,Micheli Marco,Gianotto FrancescoORCID,Faggioli Laura,Oliviero Dario,Porru Andrea,Rudawska Regina,Cano Juan LuisORCID,Conversi LucaORCID,Moissl Richard

Abstract

Context. The measurement of the Yarkovsky effect on near-Earth asteroids (NEAs) is common practice in orbit determination today, and the number of detections will increase with the developments of new and more accurate telescopic surveys. However, the process of finding new detections and identifying spurious ones is not yet automated, and it often relies on personal judgment. Aims. We aim to introduce a more automated procedure that can search for NEA candidates to measure the Yarkovsky effect, and that can identify spurious detections. Methods. The expected semi-major axis drift on an NEA caused by the Yarkovsky effect was computed with a Monte Carlo method on a statistical model of the physical parameters of the asteroid that relies on the most recent NEA population models and data. The expected drift was used to select candidates in which the Yarkovsky effect might be detected, according to the current knowledge of their orbit and the length of their observational arc. Then, a nongravitational acceleration along the transverse direction was estimated through orbit determination for each candidate. If the detected acceleration was statistically significant, we performed a statistical test to determine whether it was compatible with the Yarkovsky effect model. Finally, we determined the dependence on an isolated tracklet. Results. Among the known NEAs, our procedure automatically found 348 detections of the Yarkovsky effect that were accepted. The results are overall compatible with the predicted trend with the inverse of the diameter, and the procedure appears to be efficient in identifying and rejecting spurious detections. This algorithm is now adopted by the ESA NEO Coordination Centre to periodically update the catalogue of NEAs with a measurable Yarkovsky effect, and the results are automatically posted on the web portal.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3