Thermal properties of large main-belt asteroids observed by Herschel PACS

Author:

Alí-Lagoa V.,Müller T. G.,Kiss C.,Szakáts R.,Marton G.,Farkas-Takács A.,Bartczak P.,Butkiewicz-Bąk M.,Dudziński G.,Marciniak A.,Podlewska-Gaca E.,Duffard R.,Santos-Sanz P.,Ortiz J. L.

Abstract

Non-resolved thermal infrared observations enable studies of thermal and physical properties of asteroids via thermo-physical models provided the shape and rotational properties of the target are well determined. We used calibration-programme Herschel PACS data (70, 100, 160 μm) and state-of-the-art shape models derived from adaptive-optics observations and/or optical light curves to constrain for the first time the thermal inertia of twelve large main-belt asteroids. We also modelled previously well-characterised targets such as (1) Ceres or (4) Vesta as they constitute important benchmarks. Using the scale as a free parameter, most targets required a re-scaling ~5% consistent with what would be expected given the absolute calibration error bars. This constitutes a good cross-validation of the scaled shape models, although some targets required larger re-scaling to reproduce the IR data. We obtained low thermal inertias typical of large main belt asteroids studied before, which continues to give support to the notion that these surfaces are covered by fine-grained insulating regolith. Although the wavelengths at which PACS observed are longwards of the emission peak for main-belt asteroids, they proved to be extremely valuable to constrain size and thermal inertia and not too sensitive to surface roughness. Finally, we also propose a graphical approach to help examine how different values of the exponent used for scaling the thermal inertia as a function of heliocentric distance (i.e. temperature) affect our interpretation of the results.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3