Asteroid reflectance spectra from Gaia DR3: Near-UV in primitive asteroids

Author:

Tinaut-Ruano F.ORCID,de León J.ORCID,Tatsumi E.ORCID,Morate D.ORCID,Mahlke M.ORCID,Tanga P.ORCID,Licandro J.ORCID

Abstract

Context. In the context of charge-coupled devices (CCDs), the ultraviolet (UV) region has mostly remained unexplored after the 1990s. Gaia DR3 offers the community a unique opportunity to explore tens of thousands of asteroids in the near-UV as a proxy of the UV absorption. This absorption has been proposed in previous works as a diagnostic of hydration, organics, and space weathering. Aims. In this work, we aim to explore the potential of the NUV as a diagnostic region for primitive asteroids using Gaia DR3. Methods. We used a corrective factor over the blue part of Gaia spectra to erase the solar analog selection effect. We identified an artificial relation between the band noise and slope and applied a signal-to-noise ratio (S/N) threshold for Gaia bands. Meeting the quality standards, we employed a Markov chain Monte Carlo (MCMC) algorithm to compute the albedo threshold, maximizing primitive asteroid inclusion. Utilizing one- and two-dimensional (1D and 2D) projections, along with dimensionality-reduction methods (such as PCA and UMAP), we identified primitive asteroid populations. Results. We uncovered: (a) the first observational evidence linking UV absorption to the 0.7 µm band, tied to hydrated iron-rich phyllosilicates; and (b) a 2D space revealing a split in C-type asteroids based on spectral features, including UV absorption. The computed average depth (3.5 ± 1.0 %) and center (0.70 ± 0.03 µm) of the 0.7 µm absorption band for primitive asteroids observed with Gaia is in agreement with the literature values. Conclusions. In this paper, we shed light on the importance of the UV absorption feature to discriminate among different mineralogies (i.e., iron-rich phyllosilicates vs. iron-poor) or to identify taxonomies that are conflated in the visible (i.e., F-types vs. B-types). We have shown that this is a promising region for diagnostic studies of the composition of primitive asteroids.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3