Author:
Popescu Braileanu B.,Lukin V. S.,Khomenko E.,de Vicente Á.
Abstract
Solar prominences are formed by partially ionized plasma with inter-particle collision frequencies, which generally warrant magnetohydrodynamic treatment. In this work, we explore the dynamical impacts and observable signatures of two-fluid effects in the parameter regimes when ion-neutral collisions do not fully couple the neutral and charged fluids. We performed 2.5D two-fluid (charge – neutrals) simulations of the Rayleigh-Taylor instability (RTI) at a smoothly changing interface between a solar prominence thread and the corona. The purpose of this study is to deepen our understanding of the RTI and the effects of partial ionization on the development of the RTI using nonlinear two-fluid numerical simulations. Our two-fluid model takes into account viscosity, thermal conductivity, and collisional interaction between neutrals and charge: ionization or recombination, energy and momentum transfer, and frictional heating. In this paper, we explore the sensitivity of the RTI dynamics to the prominence equilibrium configuration, including the impact of the magnetic field strength and shear supporting the prominence thread, and the amount of prominence mass-loading. We show that at small scales, a realistically smooth prominence-corona interface leads to qualitatively different linear RTI evolution than that which is expected for a discontinuous interface, while magnetic field shear has the stabilizing effect of reducing the growth rate or eliminating the instability. In the nonlinear phase, we observe that in the presence of field shear the development of the instability leads to formation of coherent and interacting 2.5D magnetic structures, which, in turn, can lead to substantial plasma flow across magnetic field lines and associated decoupling of the fluid velocities of charged particles and neutrals.
Funder
Spanish Ministry of Science
FP7 European Research Council
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Uniturbulence statistics and analysis of factors influencing the energy spectrum;Physics of Fluids;2024-06-01
2. Kelvin–Helmholtz-induced mixing in multi-fluid partially ionized plasmas;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25
3. The influence of thermal pressure gradients and ionization (im)balance on the ambipolar diffusion and charge-neutral drifts;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25
4. Radiative loss and ion-neutral collisional effects in astrophysical plasmas;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25
5. Mixing, heating and ion-neutral decoupling induced by Rayleigh–Taylor instability in prominence-corona transition regions;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25