Kelvin–Helmholtz-induced mixing in multi-fluid partially ionized plasmas

Author:

Snow Ben1ORCID,Hillier Andrew S.1ORCID

Affiliation:

1. University of Exeter, Exeter, EX4 4QF, UK

Abstract

Turbulence is a fundamental process that drives mixing and energy redistribution across a wide range of astrophysical systems. For warm ( T 10 4 K ) plasma, the material is partially ionized, consisting of both ionized and neutral species. The interactions between ionized and neutral species are thought to play a key role in heating (or cooling) of partially ionized plasmas. Here, mixing is studied in a two-fluid partially ionized plasma undergoing the shear-driven Kelvin–Helmholtz instability to evaluate the thermal processes within the mixing layer. Two-dimensional numerical simulations are performed using the open-source (PIP) code that solves for a two-fluid plasma consisting of a charge-neutral plasma and multiple excited states of neutral hydrogen. Both collisional and radiative ionization and recombination are included. In the mixing layer, a complex array of ionization and recombination processes occur as the cooler layer joins the hotter layer, and vice versa. In localized areas of the mixing layer, the temperature exceeds the initial temperatures of either layer with heating dominated by collisional recombinations over turbulent dissipation. The mixing layer is in approximate ionization-recombination equilibrium, however the obtained equilibrium is different to the Saha–Boltzmann local thermal equilibrium. The dynamic mixing processes may be important in determining the ionization states, and with that intensities of spectral lines, of observed mixing layers. This article is part of the theme issue ‘Partially ionized plasma of the solar atmosphere: recent advances and future pathways’.

Funder

Science and Technology Facilities Council

Publisher

The Royal Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Partially ionized plasma of the solar atmosphere: recent advances and future pathways;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3