Mixing, heating and ion-neutral decoupling induced by Rayleigh–Taylor instability in prominence-corona transition regions

Author:

Lukin Vyacheslav S.1,Khomenko Elena23ORCID,Popescu Braileanu Beatrice4ORCID

Affiliation:

1. US National Science Foundation, Alexandria, VA 22306, USA

2. Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain

3. Departamento de Astrofísica, Universidad de La Laguna,La Laguna, Tenerife, Spain

4. Centre for mathematical Plasma Astrophysics, KU Leuven, Leuven, Belgium

Abstract

This study explores nonlinear development of the magnetized Rayleigh–Taylor instability (RTI) in a prominence-corona transition region. Using a two-fluid model of a partially ionized plasma, we compare RTI simulations for several different magnetic field configurations. We follow prior descriptions of the numerical prominence model (Popescu Braileanu et al. 2021 Astron. Astrophys. 646 , A93 ( doi:10.1051/0004-6361/202039053 ), Popescu Braileanu et al. 2021 Astron. Astrophys. 650 , A181 ( doi:10.1051/0004-6361/202140425 ) and Popescu Braileanu et al. 2023 Astron. Astrophys. 670 , A31 ( doi:10.1051/0004-6361/202142996 )) and explore the charged-neutral fluid coupling and plasma heating in a two-dimensional mixing layer for different magnetic field configurations. We also investigate how the shear in magnetic field surrounding a prominence may impact the release of the gravitational potential energy of the prominence material. We show that the flow decoupling is strongest in the plane normal to the direction of the magnetic field, where neutral pressure gradients drive ion-neutral drifts and frictional heating is balanced by adiabatic cooling of the expanding prominence material. We also show that magnetic field within the mixing plane can lead to faster nonlinear release of the gravitational energy driving the RTI, while more efficiently heating the plasma via viscous dissipation of associated plasma flows. We relate the computational results to potential observables by highlighting how integrating over under-resolved two-fluid sub-structure may lead to misinterpretation of observational data. This article is part of the theme issue ‘Partially ionized plasma of the solar atmosphere: recent advances and future pathways’.

Funder

H2020 European Research Council

Fonds Wetenschappelijk Onderzoek

Ministerio de Ciencia, Tecnología e Innovación

Publisher

The Royal Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Partially ionized plasma of the solar atmosphere: recent advances and future pathways;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25

2. The influence of thermal pressure gradients and ionization (im)balance on the ambipolar diffusion and charge-neutral drifts;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3