Fractionation in young cores: Direct determinations of nitrogen and carbon fractionation in HCN

Author:

Jensen S. S.ORCID,Spezzano S.,Caselli P.,Sipilä O.ORCID,Redaelli E.ORCID,Giers K.,Ferrer Asensio J.

Abstract

Context. Nitrogen fractionation is a powerful tracer of the chemical evolution during star and planet formation. It requires robust determinations of the nitrogen fractionation across different evolutionary stages. Aims. We aim to determine the 14N/15N and 12C/13C ratios for HCN in six starless and prestellar cores and to compare the results between the direct method using radiative transfer modeling and the indirect double isotope method, assuming a fixed 12C/13C ratio. Methods. We present IRAM observations of the HCN 1–0, HCN 3–2, HC15N 1–0 and H13CN 1–0 transitions toward six embedded cores. The 14N/15N ratio was derived using both the indirect double isotope method and directly through non-local thermodynamic equilibrium (NLTE) 1D radiative transfer modeling of the HCN emission. The latter also provides the 12C/13C ratio, which we compared to the local interstellar value. Results. The derived 14N/15N ratios using the indirect method are generally in the range of 300-550. This result could suggest an evolutionary trend in the nitrogen fractionation of HCN between starless cores and later stages of the star formation process. However, the direct method reveals lower fractionation ratios of around ~250, mainly resulting from a lower 12C/13C ratio in the range ~20–40, as compared to the local interstellar medium value of 68. Conclusions. This study reveals a significant difference between the nitrogen fractionation ratio in HCN derived using direct and indirect methods. This can influence the interpretation of the chemical evolution and reveal the pitfalls of the indirect double isotope method for fractionation studies. However, the direct method is challenging, as it requires well-constrained source models to produce accurate results. No trend in the nitrogen fractionation of HCN between earlier and later stages of the star formation process is evident when the results of the direct method are considered.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3