Sub-Doppler Saturation Spectroscopy of HCN up to 1 THz and Detection of J = 3 —> 2 (4—> 3) Emission from TMC1

Author:

Ahrens Volker1,Lewen Frank1,Takano Shuro12,Winnewisser Gisbert1,Urban Štepán3,Negirev A. A.4,Koroliev A. N.4

Affiliation:

1. I. Physikalisches Institut der Universität zu Köln, D-50937 Köln

2. Present address: Nobeyama Radio Observatory, Nobeyama, Minamimaki, Minamisaku, Nagano, 384-1305, Japan

3. J. Heyrovský Institute, Academy of Sciences of the Czech Republic, 182 23 Praha 8, Czech Republic

4. ISTOK, Research and Production Company, Fryazino, Moscow Region, Russia

Abstract

Very high-resolution ( ∼ 30 kHz) and very precise (±2 kHz) saturation dip and crossover dip measurements are reported for HCN. Nine consecutive rotational transitions of the vibrational ground state were recorded, covering the rotational spectrum up to the J = 11 ← 10 transition at 975 GHz. Commencing the saturation dip measurements with the J = 3 ← 2 transition located at 265 886.4 MHz, all rotational transitions were measured up to J = 11 ← 10 (ΔF = 1), positioned at a center frequency of 974 487.2 MHz. It has become possible to resolve the hyperfine structure of every rotational transition to varying degrees. Transitions obeying the selection rules ΔJ = 1, ΔF = 0 are have been resolved, those obeying the selection rules J = 1, F = 1 are only resolved for transitions lower than the J = 6 ← 5 transition. These new experimental saturation dip data, together with the molecular beam maser emission data of the J = 1 → 0 and J = 2 → 1 transitions reported by De Lucia and Gordy, (Phys. Rev. 187, 58 (1969)), and the recent terahertz measurements performed in this laboratory up to J = 22-21 at 1.946 THz (Maiwald et al., J. Mol. Spectrosc. 202, 166 (2000)), were subjected to a least squares analysis which yielded a highly precise set of molecular constants for the ground state of HCN: B = 44 315.974 970 (156) MHz, D = 0.087 216 35 (169) MHz, H = 0.086 96 (242) Hz; eQq = -4.709 03 (162) MHz, eQqJ = 0.244 (88) Hz, CN = 10.09 (38) kHz, CNJ = -0.0143 (86) mHz. Two constants, the hydrogen spin-rotation, CH = -4.35 (5) kHz, and the spin-spin interaction between the proton and nitrogen nucleus, SNH = 0.154 (3) kHz, can not be determined from the saturation dip measurements and have been taken from Ebenstein and Muenter, J. Chem. Phys. 80, 3989 (1984). There also a value for the ground state permanent electric dipole moment (in Debye’s) is given, which we quote for completeness: 〈μ〉000 = 2.985 188 (3) D. We also report the discovery of the J = 3 → 2 and J = 4 → 3 ground state rotational transitions of HCN in the dark, cold molecular cloud TMC1 by using the KOSMA 3m-Submillimeter Telescope located in the central Swiss Alps. For the J = 3 → 2 transition the hyperfine splitting has partly been resolved. The intensities of the hyperfine components are anomalous, and they are not in thermodynamic equilibrium.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3