A sensitive λ 3 mm line survey of L483

Author:

Agúndez M.,Marcelino N.,Cernicharo J.,Roueff E.,Tafalla M.

Abstract

An exhaustive chemical characterization of dense cores is mandatory to our understanding of chemical composition changes from a starless to a protostellar stage. However, only a few sources have had their molecular composition characterized in detail. Here we present a λ 3 mm line survey of L483, a dense core around a Class 0 protostar, which was observed with the IRAM 30 m telescope in the 80–116 GHz frequency range. We detected 71 molecules (140 including different isotopologs), most of which are present in the cold and quiescent ambient cloud according to their narrow lines (FWHM ~ 0.5 km s−1) and low rotational temperatures (≲10 K). Of particular interest among the detected molecules are the cis isomer of HCOOH, the complex organic molecules HCOOCH3, CH3OCH3, and C2H5OH, a wide variety of carbon chains, nitrogen oxides like N2O, and saturated molecules like CH3SH, in addition to eight new interstellar molecules (HCCO, HCS, HSC, NCCNH+, CNCN, NCO, H2NCO+, and NS+) whose detection has already been reported. In general, fractional molecular abundances in L483 are systematically lower than in TMC-1 (especially for carbon chains), tend to be higher than in L1544 and B1-b, and are similar to those in L1527. Apart from the overabundance of carbon chains in TMC-1, we find that L483 does not have a marked chemical differentiation with respect to starless/prestellar cores like TMC-1 and L1544, although it does chemically differentiate from Class 0 hot corino sources like IRAS 16293−2422. This fact suggests that the chemical composition of the ambient cloud of some Class 0 sources could be largely inherited from the dark cloud starless/prestellar phase. We explore the use of potential chemical evolutionary indicators, such as the HNCO/C3S, SO2/C2S, and CH3SH/C2S ratios, to trace the prestellar/protostellar transition. We also derived isotopic ratios for a variety of molecules, many of which show isotopic ratios close to the values for the local interstellar medium (remarkably all those involving 34S and 33S), while there are also several isotopic anomalies like an extreme depletion in 13C for one of the two isotopologs of c-C3H2, a drastic enrichment in 18O for SO and HNCO (SO being also largely enriched in 17O), and different abundances for the two 13C substituted species of C2H and the two 15N substituted species of N2H+. We report the first detection in space of some minor isotopologs like c-C3D. The exhaustive chemical characterization of L483 presented here, together with similar studies of other prestellar and protostellar sources, should allow us to identify the main factors that regulate the chemical composition of cores along the process of formation of low-mass protostars.

Funder

European Research Council

Ministerio de Ciencia e Innovación

Centre National de la Recherche Scientifique

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3