High-speed molecular cloudlets around the Galactic center’s supermassive black hole

Author:

Goicoechea Javier R.,Pety Jerome,Chapillon Edwige,Cernicharo José,Gerin Maryvonne,Herrera Cinthya,Requena-Torres Miguel A.,Santa-Maria Miriam G.

Abstract

We present 1″-resolution ALMA observations of the circumnuclear disk (CND) and the interstellar environment around Sgr A*. The images unveil the presence of small spatial scale 12CO (J = 3–2) molecular “cloudlets” (≲20 000 AU size) within the central parsec of the Milky Way, in other words, inside the cavity of the CND, and moving at high speeds, up to 300 km s−1 along the line-of-sight. The 12CO-emitting structures show intricate morphologies: extended and filamentary at high negative-velocities (vLSR ≲−150 km s−1), more localized and clumpy at extreme positive-velocities (vLSR ≳+200 km s−1). Based on the pencil-beam 12CO absorption spectrum toward Sgr A* synchrotron emission, we also present evidence for a diffuse molecular gas component producing absorption features at more extreme negative-velocities (vLSR < −200 km s−1). The CND shows a clumpy spatial distribution traced by the optically thin H13CN (J = 4–3) emission. Its motion requires a bundle of non-uniformly rotating streams of slightly different inclinations. The inferred gas density peaks, molecular cores of several 105 cm−3, are lower than the local Roche limit. This supports that CND cores are transient. We apply the two standard orbit models, spirals vs. ellipses, invoked to explain the kinematics of the ionized gas streamers around Sgr A*. The location and velocities of the 12CO cloudlets inside the cavity are inconsistent with the spiral model, and only two of them are consistent with the Keplerian ellipse model. Most cloudlets, however, show similar velocities that are incompatible with the motions of the ionized streamers or with gas bounded to the central gravity. We speculate that they are leftovers of more massive molecular clouds that fall into the cavity and are tidally disrupted, or that they originate from instabilities in the inner rim of the CND that lead to fragmentation and infall from there. In either case, we show that molecular cloudlets, all together with a mass of several 10 M, exist around Sgr A*. Most of them must be short-lived, ≲104 yr: photoevaporated by the intense stellar radiation field, G0 ≃ 105.3–104.3, blown away by winds from massive stars in the central cluster, or disrupted by strong gravitational shears.

Funder

European Research Council

Ministerio de Ciencia e Innovación

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3