The Apparent Tail of the Galactic Center Object G2/DSO

Author:

Peißker FlorianORCID,Zajaček MichalORCID,Eckart AndreasORCID,Ali BaselORCID,Karas VladimírORCID,Sabha Nadeen B.ORCID,Grellmann RebekkaORCID,Labadie LucasORCID,Shahzamanian BanafshehORCID

Abstract

Abstract Observations of the near-infrared excess object G2/DSO increased attention toward the Galactic center and its vicinity. The predicted flaring event in 2014 and the outcome of the intense monitoring of the supermassive black hole in the center of our Galaxy did not fulfill all predictions about a significantly enhanced accretion event. Subsequent observations addressed the question concerning the nature of the object because of its compact shape, especially during its periapse in 2014. Theoretical approaches have attempted to answer the contradictory behavior of the object, resisting the expected dissolution of a gaseous cloud due to tidal forces in combination with evaporation and hydrodynamical instabilities. However, assuming that the object is instead a dust-enshrouded young stellar object seems to be in line with the predictions of several groups and observations presented in numerous publications. Here we present a detailed overview and analysis of the observations of the object that have been performed with SINFONI (VLT) and we provide a comprehensive approach to clarify the nature of G2/DSO. We show that the tail emission consists of two isolated and compact sources with different orbital elements for each source rather than an extended and stretched component as it appeared in previous representations of the same data. Considering our recent publications, we propose that the monitored dust-enshrouded objects are remnants of a dissolved young stellar cluster whose formation was initiated in the circumnuclear disk. This indicates a shared history, which agrees with our analysis of the D- and X-sources.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3