Dynamical coupling of Keplerian orbits in a hierarchical four-body system: from the Galactic Centre to compact planetary systems

Author:

Singhal M1ORCID,Šubr L1,Haas J1

Affiliation:

1. Astronomical Institute, Faculty of Mathematics and Physics, Charles University , V Holešovičkách 2/747, 18000 Praha, Czech Republic

Abstract

ABSTRACT This study focuses on the long-term evolution of two bodies in nearby initially coplanar orbits around a central dominant body perturbed by a fourth body on a distant Keplerian orbit. Our previous works that considered this setup enforced circular orbits by adding a spherical potential of extended mass, which dampens Kozai–Lidov oscillations; it led to two qualitatively different modes of the evolution of the nearby orbits. In one scenario, their mutual interaction exceeds the effect of differential precession caused by a perturbing body. This results in a long-term coherent evolution, with nearly coplanar orbits experiencing only small oscillations of inclination. We extend the previous work by (i) considering post-Newtonian corrections to the gravity of the central body, either instead of or in addition to the potential of extended mass, (ii) relaxing the requirement of strictly circular orbits, and (iii) removing the strict requirement of complete Kozai–Lidov damping. Thus, we identify the modes of interorbital interaction described for the zero eccentricity case in the more general situation, which allows for its applicability to a much broader range of astrophysical systems than considered initially. In this work, we scale the systems to the orbits of S-stars; we consider the clockwise disc to represent the perturbing body, with post-Newtonian corrections to the gravity of Sagittarius A* playing the role of damping potential. Considering post-Newtonian corrections, even stellar-mass central bodies in compact planetary systems can allow for the coupled evolution of Keplerian orbits.

Funder

Univerzita Karlova v Praze

Grantová Agentura České Republiky

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3