Ab initio based equation of state of dense water for planetary and exoplanetary modeling

Author:

Mazevet S.,Licari A.,Chabrier G.,Potekhin A. Y.

Abstract

Context. The modeling of planetary interiors requires accurate equations of state (EOSs) for the basic constituents with proven validity in the difficult pressure–temperature regime extending up to 50 000 K and hundreds of megabars. While EOSs based on first-principles simulations are now available for the two most abundant elements, hydrogen and helium, the situation is less satisfactory for water where no wide-range EOS is available despite its requirement for interior modeling of planets ranging from super-Earths to planets several times the size of Jupiter. Aims. As a first step toward a multi-phase EOS for dense water, we develop a temperature-dependent EOS for dense water covering the liquid and plasma regimes and extending to the super-ionic and gas regimes. This equation of state covers the complete range of conditions encountered in planetary modeling. Methods. We use first-principles quantum molecular dynamics simulations and the Thomas-Fermi extension to reach the highest pressures encountered in giant planets several times the size of Jupiter. Using these results, as well as the data available at lower pressures, we obtain a parametrization of the Helmholtz free energy adjusted over this extended temperature and pressure domain. The parametrization ignores the entropy and density jumps at phase boundaries but we show that it is sufficiently accurate to model interior properties of most planets and exoplanets. Results. We produce an EOS given in analytical form that is readily usable in planetary modeling codes and dynamical simulations (a fortran implementation is provided). The EOS produced is valid for the entire density range relevant to planetary modeling, for densities where quantum effects for the ions can be neglected, and for temperatures below 50 000K. We use this EOS to calculate the mass-radius relationship of exoplanets up to 5000 MEarth, explore temperature effects in the wet Earth-like, ocean planets and pure water planets, and quantify the influence of the water EOS for the core on the gravitational moments of Jupiter.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3