A3COSMOS: The infrared luminosity function and dust-obscured star formation rate density at 0.5 < z < 6

Author:

Traina A.,Gruppioni C.,Delvecchio I.,Calura F.,Bisigello L.,Feltre A.,Magnelli B.,Schinnerer E.,Liu D.,Adscheid S.,Behiri M.,Gentile F.,Pozzi F.,Talia M.,Zamorani G.,Algera H.,Gillman S.,Lambrides E.,Symeonidis M.

Abstract

Aims. We leverage the largest available Atacama Large Millimeter/submillimeter Array (ALMA) survey from the archive (A3COSMOS) to study infrared luminosity function and dust-obscured star formation rate density of (sub)millimeter galaxies from z = 0.5 − 6. Methods. The A3COSMOS survey utilizes all publicly available ALMA data in the COSMOS field and therefore has inhomogeneous coverage in terms of observing wavelength and depth. In order to derive the luminosity functions and star formation rate densities, we applied a newly developed method that corrects the statistics of an inhomogeneously sampled survey of individual pointings to those representing an unbiased blind survey. Results. We find our sample to mostly consist of massive (M ∼ 1010 − 1012 M) IR-bright (L* ∼ 1011 − 1013.5L) highly star-forming (SFR ∼100 − 1000 M yr−1) galaxies. We find an evolutionary trend in the typical density (Φ*) and luminosity (L*) of the galaxy population that respectively decreases and increases with redshift. Our infrared luminosity function (LF) is in agreement with previous literature results, and we were able to extend the constraints on the knee and bright end of the LF to high redshift (z > 3) by using the Herschel data. Finally, we obtained the star formation rate density up to z ∼ 6 by integrating the IR LF, finding a broad peak from z ∼ 1 to z ∼ 3 and a decline toward higher redshifts, in agreement with recent IR/millimeter-based studies, within the uncertainties. These results imply the presence of larger quantities of dust than what is expected based on optical/UV studies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3