Solid confirmation of the broad DIB around 864.8 nm using stacked Gaia–RVS spectra

Author:

Zhao H.ORCID,Schultheis M.ORCID,Zwitter T.ORCID,Bailer-Jones C. A. L.,Panuzzo P.,Sartoretti P.,Seabroke G. M.,Recio-Blanco A.,de Laverny P.ORCID,Kordopatis G.ORCID,Creevey O. L.ORCID,Dharmawardena T. E.ORCID,Frémat Y.ORCID,Sordo R.ORCID,Drimmel R.ORCID,Marshall D. J.ORCID,Palicio P. A.ORCID,Contursi G.,Álvarez M. A.ORCID,Baker S.,Benson K.,Cropper M.,Dolding C.,Huckle H. E.,Smith M.,Marchal O.,Ordenovic C.,Pailler F.,Slezak I.

Abstract

Context. Studies of the correlation between different diffuse interstellar bands (DIBs) are important for exploring their origins. However, the Gaia–RVS spectral window between 846 and 870 nm contains few DIBs, the strong DIB at 862 nm being the only convincingly confirmed one. Aims. Here we attempt to confirm the existence of a broad DIB around 864.8 nm and estimate its characteristics using the stacked Gaia–RVS spectra of a large number of stars. We study the correlations between the two DIBs at 862 nm (λ862) and 864.8 nm (λ864.8), as well as the interstellar extinction. Methods. We obtained spectra of the interstellar medium (ISM) absorption by subtracting the stellar components using templates constructed from real spectra at high Galactic latitudes with low extinctions. We then stacked the ISM spectra in Galactic coordinates (ℓ,  b) – pixelized by the HEALPix scheme – to measure the DIBs. The stacked spectrum is modeled by the profiles of the two DIBs, Gaussian for λ862 and Lorentzian for λ864.8, and a linear continuum. We report the fitted central depth (CD), central wavelength, equivalent width (EW), and their uncertainties for the two DIBs. Results. We obtain 8458 stacked spectra in total, of which 1103 (13%) have reliable fitting results after applying numerous conservative filters. This work is the first of its kind to fit and measure λ862 and λ864.8 simultaneously in cool-star spectra. Based on these measurements, we find that the EWs and CDs of λ862 and λ864.8 are well correlated with each other, with Pearson coefficients (rp) of 0.78 and 0.87, respectively. The full width at half maximum (FWHM) of λ864.8 is estimated as 1.62 ± 0.33 nm which compares to 0.55 ± 0.06 nm for λ862. We also measure the vacuum rest-frame wavelength of λ864.8 to be λ0 = 864.53 ± 0.14 nm, smaller than previous estimates. Conclusions. We find solid confirmation of the existence of the DIB around 864.8 nm based on an exploration of its correlation with λ862 and estimation of its FWHM. The DIB λ864.8 is very broad and shallow. That at λ862 correlates better with E(BP − RP) than λ864.8. The profiles of the two DIBs could strongly overlap with each other, which contributes to the skew of the λ862 profile.

Funder

National institutions participating in the Gaia Multilateral Agreement

German Aerospace Agency

“The Milky Way System” of the German Research Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3