Updated extraction of the APOGEE 1.5273 μm diffuse interstellar band: a Planck view on the carrier depletion in dense cores

Author:

Elyajouri M.ORCID,Lallement R.

Abstract

Context. Constraining the spatial distribution of diffuse interstellar band (DIB) carriers and their links with gas and dust are mandatory steps in understanding their role in interstellar chemistry. Aims. The latest SDSS/APOGEE data release, DR14, has provided an increased number of stellar spectra in the H band and associated stellar models using an innovative algorithm known as the Cannon. We took advantage of these novelties to extract the 15 273 Å near-infrared DIB and to study its link with dust extinction and emission. Methods. We modified our automated fitting methods dedicated to hot stars and used in earlier studies with some adaptations motivated by the change from early- or intermediate-type stars to red giants. A new method has also been developed to quantify the upper limits on DIB strengths. Careful and thorough examinations were carried out of the DIB parameters, the continuum shape, and the quality of the adjustment of the model to the data. We compared our DIB measurements with the stellar extinctions, AV, from the Starhorse database. We then compared the resulting DIB–extinction ratio with the dust optical depth derived from Planck data, both globally and separately for nearby off-plane cloud complexes. Results. Our analysis has led to the production of a catalog containing 124 064 new measurements of the 15 273 Å DIB, allowing us to revisit the correlation between DIB strength and dust reddening. The new data clearly reveal that the sky-averaged 15 273 Å DIB strength is linearly correlated with AV over two orders as reported by earlier studies but leveling off with respect to extinction for highly reddened lines of sight behind dense clouds. The comparison with Planck individual optical depths reveals in a conspicuous way this DIB depletion in the dense cores and shows it applies to all off-plane dense clouds. Using selected targets located beyond the Orion, Taurus, and Cepheus clouds, we derived empirical relationships between the DIB–extinction ratio and the Planck dust optical depth for the three cloud complexes. Their average is similar to the DIB carrier depletion measured in the dark cloud Barnard 68. Conclusions. APOGEE measurements confirm the ubiquity of the 15 273 Å DIB carrier decrease with respect to dust grains in dense cloud cores, in a manner that can be empirically related to the dust optical depth reached in the cloud. They also show that the ratio between the DIB equivalent width and the extinction AV for sightlines with τ(353GHz) ≲ 2 × 10−5 that do not contain dense molecular gas is about four times higher than the constant limit towards which the ratio tends for very long sightlines with many diffuse and dense phases distributed in distance.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3