Repeating tidal disruptions in GSN 069: Long-term evolution and constraints on quasi-periodic eruptions’ models

Author:

Miniutti G.ORCID,Giustini M.ORCID,Arcodia R.ORCID,Saxton R. D.,Read A. M.,Bianchi S.ORCID,Alexander K. D.

Abstract

Context. GSN 069 is the first galactic nucleus where quasi-periodic eruptions (QPEs) have been identified in December 2018. These are high-amplitude, soft X-ray bursts recurring every ∼9 h, lasting ∼1 h, and during which the X-ray count rate increases by up to two orders of magnitude with respect to an otherwise stable quiescent level. The X-ray spectral properties and the long-term evolution of GSN 069 in the first few years since its first X-ray detection in 2010 are consistent with a long-lived tidal disruption event (TDE). Aims. We aim to derive the properties of QPEs and of the long-term X-ray evolution in GSN 069 over the past 12 yr. Methods. We analyse timing and spectral X-ray data from 11 XMM-Newton, one Chandra, and 34 Swift observations of GSN 069 on timescales ranging from minutes to years. Results. QPEs in GSN 069 are a transient phenomenon with a lifetime of ≳1.05 yr. The QPE intensity and recurrence time oscillate and allow for alternating strong-weak QPEs and long-short recurrence times to be defined. In observations with QPEs, the quiescent level exhibits a quasi-periodic oscillation with a period equal to the average separation between consecutive QPEs. The QPE spectral evolution is consistent with thermal emission from a very compact region that heats up quickly and subsequently cools down via X-ray emission while expanding by a factor of ∼3 in radius. The long-term evolution of the quiescent level is characterised by two repeating TDEs ∼9 yr apart. We detect a precursor X-ray flare prior to the second TDE that may be associated with the circularisation phase during disc formation. A similar precursor flare is tentatively detected just before the first TDE. Conclusions. We provide a comprehensive summary of observational results that can be used to inform further theoretical and numerical studies on the origin of QPEs in GSN 069 and we discuss our results in terms of currently proposed QPE models. Future X-ray observations of GSN 069 promise that the QPE origin and the relation between QPEs and repeating TDEs in this galactic nucleus will be constrained, with consequences for the other sources where QPEs have been identified.

Funder

Comunidad de Madrid

Italian Space Agency

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3