X-ray quasi-periodic eruptions from two previously quiescent galaxies

Author:

Arcodia R.ORCID,Merloni A.ORCID,Nandra K.ORCID,Buchner J.,Salvato M.ORCID,Pasham D.,Remillard R.ORCID,Comparat J.,Lamer G.,Ponti G.ORCID,Malyali A.ORCID,Wolf J.,Arzoumanian Z.,Bogensberger D.ORCID,Buckley D. A. H.,Gendreau K.ORCID,Gromadzki M.ORCID,Kara E.,Krumpe M.,Markwardt C.,Ramos-Ceja M. E.ORCID,Rau A.ORCID,Schramm M.,Schwope A.ORCID

Abstract

AbstractQuasi-periodic eruptions (QPEs) are very-high-amplitude bursts of X-ray radiation recurring every few hours and originating near the central supermassive black holes of galactic nuclei1,2. It is currently unknown what triggers these events, how long they last and how they are connected to the physical properties of the inner accretion flows. Previously, only two such sources were known, found either serendipitously or in archival data1,2, with emission lines in their optical spectra classifying their nuclei as hosting an actively accreting supermassive black hole3,4. Here we report observations of QPEs in two further galaxies, obtained with a blind and systematic search of half of the X-ray sky. The optical spectra of these galaxies show no signature of black hole activity, indicating that a pre-existing accretion flow that is typical of active galactic nuclei is not required to trigger these events. Indeed, the periods, amplitudes and profiles of the QPEs reported here are inconsistent with current models that invoke radiation-pressure-driven instabilities in the accretion disk5–9. Instead, QPEs might be driven by an orbiting compact object. Furthermore, their observed properties require the mass of the secondary object to be much smaller than that of the main body10, and future X-ray observations may constrain possible changes in their period owing to orbital evolution. This model could make QPEs a viable candidate for the electromagnetic counterparts of so-called extreme-mass-ratio inspirals11–13, with considerable implications for multi-messenger astrophysics and cosmology14,15.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3