The Peak of the Fallback Rate from Tidal Disruption Events: Dependence on Stellar Type

Author:

Bandopadhyay AnanyaORCID,Fancher JuliaORCID,Athian Aluel,Indelicato Valentino,Kapalanga Sarah,Kumah Angela,Paradiso Daniel A.ORCID,Todd MatthewORCID,Coughlin Eric R.ORCID,Nixon C. J.ORCID

Abstract

Abstract A star completely destroyed in a tidal disruption event (TDE) ignites a luminous flare that is powered by the fallback of tidally stripped debris to a supermassive black hole (SMBH) of mass M . We analyze two estimates for the peak fallback rate in a TDE, one being the “frozen-in” model, which predicts a strong dependence of the time to peak fallback rate, t peak, on both stellar mass and age, with 15 days ≲ t peak ≲ 10 yr for main sequence stars with masses 0.2 ≤ M /M ≤ 5 and M = 106 M . The second estimate, which postulates that the star is completely destroyed when tides dominate the maximum stellar self-gravity, predicts that t peak is very weakly dependent on stellar type, with t peak = 23.2 ± 4.0 days M / 10 6 M 1 / 2 for 0.2 ≤ M /M ≤ 5, while t peak = 29.8 ± 3.6 days M / 10 6 M 1 / 2 for a Kroupa initial mass function truncated at 1.5M . This second estimate also agrees closely with hydrodynamical simulations, while the frozen-in model is discrepant by orders of magnitude. We conclude that (1) the time to peak luminosity in complete TDEs is almost exclusively determined by SMBH mass, and (2) massive-star TDEs power the largest accretion luminosities. Consequently, (a) decades-long extra-galactic outbursts cannot be powered by complete TDEs, including massive-star disruptions, and (b) the most highly super-Eddington TDEs are powered by the complete disruption of massive stars, which—if responsible for producing jetted TDEs—would explain the rarity of jetted TDEs and their preference for young and star-forming host galaxies.

Funder

National Science Foundation

UKRI ∣ Science and Technology Facilities Council

Leverhulme Trust

Publisher

American Astronomical Society

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3