A complete study of the precision of the concentric MacLaurin spheroid method to calculate Jupiter’s gravitational moments

Author:

Debras F.ORCID,Chabrier G.

Abstract

A few years ago, Hubbard (2012, ApJ, 756, L15; 2013, ApJ, 768, 43) presented an elegant, non-perturbative method, called concentric MacLaurin spheroid (CMS), to calculate with very high accuracy the gravitational moments of a rotating fluid body following a barotropic pressure-density relationship. Having such an accurate method is of great importance for taking full advantage of the Juno mission, and its extremely precise determination of Jupiter gravitational moments, to better constrain the internal structure of the planet. Recently, several authors have applied this method to the Juno mission with 512 spheroids linearly spaced in altitude. We demonstrate in this paper that such calculations lead to errors larger than Juno’s error bars, invalidating the aforederived Jupiter models at the level required by Juno’s precision. We show that, in order to fulfill Juno’s observational constraints, at least 1500 spheroids must be used with a cubic, square or exponential repartition, the most reliable solutions. When using a realistic equation of state instead of a polytrope, we highlight the necessity to properly describe the outermost layers to derive an accurate boundary condition, excluding in particular a zero pressure outer condition. Providing all these constraints are fulfilled, the CMS method can indeed be used to derive Jupiter models within Juno’s present observational constraints. However, we show that the treatment of the outermost layers leads to irreducible errors in the calculation of the gravitational moments and thus on the inferred physical quantities for the planet. We have quantified these errors and evaluated the maximum precision that can be reached with the CMS method in the present and future exploitation of Juno’s data.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3