SOLIS

Author:

de A. Schutzer A.,Rivera-Ortiz P. R.,Lefloch B.,Gusdorf A.,Favre C.,Segura-Cox D.,López-Sepulcre A.,Neri R.,Ospina-Zamudio J.,De Simone M.,Codella C.,Viti S.,Podio L.,Pineda J.,O’Donoghue R.,Ceccarelli C.,Caselli P.,Alves F.,Bachiller R.,Balucani N.,Bianchi E.,Bizzocchi L.,Bottinelli S.,Caux E.,Chacón-Tanarro A.,Dulieu F.,Enrique-Romero J.,Fontani F.,Feng S.,Holdship J.,Jiménez-Serra I.,Jaber Al-Edhari A.,Kahane C.,Lattanzi V.,Oya Y.,Punanova A.,Rimola A.,Sakai N.,Spezzano S.,Sims I. R.,Taquet V.,Testi L.,Theulé P.,Ugliengo P.,Vastel C.,Vasyunin A. I.,Vazart F.,Yamamoto S.,Witzel A.

Abstract

Context.Protostellar jets are an important agent of star formation feedback, tightly connected with the mass-accretion process. The history of jet formation and mass ejection provides constraints on the mass accretion history and on the nature of the driving source.Aims.We characterize the time-variability of the mass-ejection phenomena at work in the class 0 protostellar phase in order to better understand the dynamics of the outflowing gas and bring more constraints on the origin of the jet chemical composition and the mass-accretion history.Methods.Using the NOrthern Extended Millimeter Array (NOEMA) interferometer, we have observed the emission of the CO 2–1 and SONJ= 54–43rotational transitions at an angular resolution of 1.0″ (820 au) and 0.4″ (330 au), respectively, toward the intermediate-mass class 0 protostellar system Cep E.Results.The CO high-velocity jet emission reveals a central component of ≤400 au diameter associated with high-velocity molecular knots that is also detected in SO, surrounded by a collimated layer of entrained gas. The gas layer appears to be accelerated along the main axis over a length scaleδ0~ 700 au, while its diameter gradually increases up to several 1000 au at 2000 au from the protostar. The jet is fragmented into 18 knots of mass ~10−3M, unevenly distributed between the northern and southern lobes, with velocity variations up to 15 km s−1close to the protostar. This is well below the jet terminal velocities in the northern (+ 65 km s−1) and southern (−125 km s−1) lobes. The knot interval distribution is approximately bimodal on a timescale of ~50–80 yr, which is close to the jet-driving protostar Cep E-A and ~150–20 yr at larger distances >12″. The mass-loss rates derived from knot masses are steady overall, with values of 2.7 × 10−5Myr−1and 8.9 × 10−6Myr−1in the northern and southern lobe, respectively.Conclusions.The interaction of the ambient protostellar material with high-velocity knots drives the formation of a molecular layer around the jet. This accounts for the higher mass-loss rate in the northern lobe. The jet dynamics are well accounted for by a simple precession model with a period of 2000 yr and a mass-ejection period of 55 yr.

Funder

he European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3