BIPOLAR MOLECULAR OUTFLOWS FROM YOUNG STARS AND PROTOSTARS

Author:

Bachiller Rafael1

Affiliation:

1. Observatorio Astronómico Nacional (IGN), Campus Universitario, Apartado 1143, Alcalá de Henares (Madrid), E–28800 Spain

Abstract

▪ Abstract  A violent outflow of high-velocity gas is one of the first manifestations of the formation of a new star. Such outflows emerge bipolarly from the young object and involve amounts of energy similar to those involved in accretion processes. The youngest (proto-)stellar low-mass objects known to date (the Class 0 protostars) present a particularly efficient outflow activity, indicating that outflow and infall motions happen simultaneously and are closely linked since the very first stages of the star formation processes. This article reviews the wealth of information being provided by large millimeter-wave telescopes and interferometers on the small-scale structure of molecular outflows, as well as the most recent theories about their origin. The observations of highly collimated CO outflows, extremely high velocity (EHV) flows, and molecular “bullets” are examined in detail, since they provide key information on the origin and propagation of outflows. The peculiar chemistry operating in the associated shocked molecular regions is discussed, highlighting the recent high-sensitivity observations of low-luminosity sources. The classification schemes and the properties of the driving sources of bipolar outflows are summarized with special attention devoted to the recently identified Class 0 protostars. All these issues are crucial for building a unified theory on the mass-loss phenomena in young stars.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 474 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial distributions of PN and PO in the shock region L1157-B1;Astronomy & Astrophysics;2024-07

2. The Stability of Dense Cores near the Serpens South Protocluster;The Astrophysical Journal;2024-07-01

3. Turbulence and the characteristics of circumstellar discs;Monthly Notices of the Royal Astronomical Society;2024-06-17

4. Sample and Statistical Analysis on NEOWISE Variability of ATLASGAL Sources;The Astrophysical Journal Supplement Series;2024-06-01

5. Multiple chemical tracers finally unveil the intricate NGC 1333 IRAS 4A outflow system. FAUST XVI;Monthly Notices of the Royal Astronomical Society;2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3