Partial-envelope stripping and nuclear-timescale mass transfer from evolved supergiants at low metallicity

Author:

Klencki JakubORCID,Istrate Alina,Nelemans Gijs,Pols Onno

Abstract

Stable mass transfer from a massive post-main sequence (post-MS) donor is thought to be a short-lived event of thermal-timescale mass transfer (∼10−3M yr−1) which within ≲104 yr strips the donor star of nearly its entire H-rich envelope, producing a hot, compact helium star. This long-standing picture is based on stellar models with rapidly expanding Hertzprung gap (HG) donor stars. Motivated by a finding that in low-metallicity binaries, post-MS mass transfer may instead be initiated by donors already at the core-helium burning (CHeB) stage, we used the MESA stellar-evolution code to compute grids of detailed massive binary models at three metallicities: those of the Sun, the Large Magellanic Cloud (LMC, ZFe; LMC/ZFe; ⊙ ≈ 0.36), and the Small Magellanic Cloud (SMC, ZFe; SMC/ZFe; ⊙ ≈ 0.2). Our grids span a wide range in orbital periods (∼3 to 5000 days) and initial primary masses (10 M to 36 − 53 M, depending on metallicity). We find that metallicity strongly influences the course and outcome of mass-transfer evolution. We identify two novel types of post-MS mass transfer: (a) mass exchange on the long nuclear timescale (ΔTMT ≳ 105 yr, ∼ 10−5 M yr−1) that continues until the end of the CHeB phase, and (b) rapid mass transfer leading to detached binaries with mass losers that are only partially stripped of their envelopes. At LMC and SMC compositions, the majority of binary models with donor masses ≥17 M follow one of these two types of evolution. In neither (a) nor (b) does the donor become a fully stripped helium star by the end of CHeB. Boundaries between the different types of post-MS mass transfer evolution are associated with the degree of rapid post-MS expansion of massive stars and, for a given metallicity, are sensitive to the assumptions about internal mixing. At low metallicity, due to partial envelope stripping, we predict fewer hot fully stripped stars formed through binary interactions as well as higher compactness of the presupernova core structures of mass losers. Nuclear-timescale post-MS mass transfer suggests a strong preference for metal-poor host galaxies of ultra-luminous X-ray sources with black-hole (BH) accretors and massive donors, some of which might be the immediate progenitors of binary BH mergers. It also implies a population of interacting binaries with blue and yellow supergiant donors. Partially stripped stars could potentially explain the puzzling nitrogen-enriched slowly rotating (super)giants in the LMC.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Evolution of Massive Binary Stars;Annual Review of Astronomy and Astrophysics;2024-09-13

2. Fate of supernova progenitors in massive binary systems;Monthly Notices of the Royal Astronomical Society;2024-07-12

3. Evolutionary nature of puffed-up stripped star binaries and their occurrence in stellar populations;Astronomy & Astrophysics;2024-07

4. Interacting supernovae from wide massive binary systems;Astronomy & Astrophysics;2024-05

5. Impact of different approaches to computing rotating stellar models;Astronomy & Astrophysics;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3