Stellar feedback in M83 as observed with MUSE

Author:

Della Bruna Lorenza,Adamo Angela,Amram Philippe,Rosolowsky Erik,Usher Christopher,Sirressi Mattia,Schruba Andreas,Emsellem Eric,Leroy Adam,Bik Arjan,Blair William P.,McLeod Anna F.,Östlin Göran,Renaud Florent,Robert Carmelle,Rousseau-Nepton Laurie,Smith Linda J.

Abstract

Context. Young massive stars inject energy and momentum into the surrounding gas, creating a multi-phase interstellar medium (ISM) and regulating further star formation. The main challenge of studying stellar feedback proves to be the variety of scales spanned by this phenomenon, ranging from the immediate surrounding of the stars (H II regions, 10s pc scales) to galactic-wide kiloparsec scales. Aims. We present a large mosaic (3.8 × 3.8 kpc) of the nearby spiral galaxy M83, obtained with the MUSE instrument at ESO Very Large Telescope. The integral field spectroscopy data cover a large portion of the optical disk at a resolution of ∼20 pc, allowing the characterisation of single H II regions while sampling diverse dynamical regions in the galaxy. Methods. We obtained the kinematics of the stars and ionised gas, and compared them with molecular gas kinematics observed in CO(2-1) with the ALMA telescope array. We separated the ionised gas into H II regions and diffuse ionised gas (DIG) and investigated how the fraction of Hα luminosity originating from the DIG (fDIG) varies with galactic radius. Results. We observe that both stars and gas trace the galactic disk rotation, as well as a fast-rotating nuclear component (30″ ≃ 700 pc in diameter), likely connected to secular processes driven by the galactic bar. In the gas kinematics, we observe a stream east of the nucleus (50″ ≃ 1250 pc in size), redshifted with respect to the disk. The stream is surrounded by an extended ionised gas region (1000 × 1600 pc) with enhanced velocity dispersion and a high ionisation state, which is largely consistent with being ionised by slow shocks. We interpret this feature as either the superposition of the disk and an extraplanar layer of DIG, or as a bar-driven inflow of shocked gas. A double Gaussian component fit to the Hα line also reveals the presence of a nuclear biconic structure whose axis of symmetry is perpendicular to the bar. The two cones (20″ ≃ 500 pc in size) appear blue- and redshifted along the line of sight. The cones stand out for having an Hα emission separated by up to 200 km s−1 from that of the disk, and a high velocity dispersion ∼80–200 km s−1. At the far end of the cones, we observe that the gas is consistent with being ionised by shocks. These features had never been observed before in M83; we postulate that they are tracing a starburst-driven outflow shocking into the surrounding ISM. Finally, we obtain fDIG ∼ 13% in our field of view, and observe that the DIG contribution varies radially between 0.8 and 46%, peaking in the interarm region. We inspect the emission of the H II regions and DIG in ‘BPT’ diagrams, finding that in H II regions photoionisation accounts for 99.8% of the Hα flux, whereas the DIG has a mixed contribution from photoionisation (94.9%) and shocks (5.1%).

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3