Bidimensional Exploration of the warm-Temperature Ionised gaS (BETIS)

Author:

González-Díaz R.ORCID,Rosales-Ortega F. F.ORCID,Galbany L.ORCID,Anderson J. P.ORCID,Jiménez-Palau C.ORCID,Kopsacheili M.ORCID,Kuncarayakti H.ORCID,Lyman J. D.ORCID,Sánchez S. F.ORCID

Abstract

We present the Bidimensional Exploration of the warm-Temperature Ionised gaS (BETIS) project, designed for the spatial and spectral study of the diffuse ionised gas (DIG) in a selection of nearby spiral galaxies observed with the MUSE integral-field spectrograph. Our primary objective is to investigate the various ionisation mechanisms at play within the DIG. We analysed the distribution of high- and low-ionisation species in the optical spectra of the sample on a spatially resolved basis. We introduced a new methodology for spectroscopically defining the DIG, optimised for galaxies of different resolutions. Firstly, we employed an innovative adaptive binning technique on the observed datacube based on the spectroscopic signal-to-noise ratio (S/N) of the collisional [S II] line to increase the S/N of the rest of the lines including [O III], [O I], and He I. Subsequently, we created a DIG mask by eliminating the emissions associated with both bright and faint H II regions. We also examined the suitability of using Hα equivalent width (EWHα) as a proxy for defining the DIG and its associated ionisation regime. Notably, for EWHα < 3 Å – the expected emission from hot low-mass evolved stars (HOLMES) – the measured value is contingent on the chosen population synthesis technique performed. Our analysis of the showcase sample reveals a consistent cumulative DIG fraction across all galaxies in the sample, averaging around 40%–70%. The average radial distribution of the [N II]/Hα, [S II]/Hα, [O I]/Hα, and [O III]/Hβ ratios are enhanced in the DIG regimes (up to 0.2 dex). It follows similar trends between the DIG regime and the H II regions, as well as the Hα surface brightness (ΣHα), indicating a correlation between the ionisation of these species in both the DIG and the H II regions. The DIG loci in typical diagnostic diagrams are found, in general, within the line ratios that correspond to photoionisation due to the star formation. There is a noticeable offset correspondent to ionisation due to fast shocks. However, an individual diagnosis performed for each galaxy reveals that all the DIG in these galaxies can be attributed to photoionisation from star formation. The offset is primarily due to the contribution of Seyfert galaxies in our sample, which is closely aligned with models of ionisation from fast shocks and galactic outflows, thus mimicking the DIG emission. Our results indicate that galaxies exhibiting active galactic nucleus (AGN) activity should be considered separately when conducting a general analysis of the DIG ionisation mechanisms, since this emission is indistinguishable from high-excitation DIG.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3