Exoplanet characterization using conditional invertible neural networks

Author:

Haldemann JonasORCID,Ksoll VictorORCID,Walter DanielORCID,Alibert YannORCID,Klessen Ralf S.ORCID,Benz WillyORCID,Koethe UllrichORCID,Ardizzone Lynton,Rother Carsten

Abstract

Context. The characterization of the interior of an exoplanet is an inverse problem. The solution requires statistical methods such as Bayesian inference. Current methods employ Markov chain Monte Carlo (MCMC) sampling to infer the posterior probability of the planetary structure parameters for a given exoplanet. These methods are time-consuming because they require the evaluation of a planetary structure model ~105 times. Aims. To speed up the inference process when characterizing an exoplanet, we propose to use conditional invertible neural networks to calculate the posterior probability of the planetary structure parameters. Methods. Conditional invertible neural networks (cINNs) are a special type of neural network that excels at solving inverse problems. We constructed a cINN following the framework for easily invertible architectures (FreIA). This neural network was then trained on a database of 5.6 × 106 internal structure models to recover the inverse mapping between internal structure parameters and observable features (i.e., planetary mass, planetary radius, and elemental composition of the host star). We also show how observational uncertainties can be accounted for. Results. The cINN method was compared to a commonly used Metropolis-Hastings MCMC. To do this, we repeated the characterization of the exoplanet K2-111 b, using both the MCMC method and the trained cINN. We show that the inferred posterior probability distributions of the internal structure parameters from both methods are very similar; the largest differences are seen in the exoplanet water content. Thus, cINNs are a possible alternative to the standard time-consuming sampling methods. cINNs allow infering the composition of an exoplanet that is orders of magnitude faster than what is possible using an MCMC method. The computation of a large database of internal structures to train the neural network is still required, however. Because this database is only computed once, we found that using an invertible neural network is more efficient than an MCMC when more than ten exoplanets are characterized using the same neural network.

Funder

Swiss National Science Foundation

European Research Council

Deutsche Forschungsgemeinschaft

German Excellence Strategy

German Ministry for Economic Affairs and Climate Action

Ministry of Science, Research and the Arts of the State of Baden-Württemberg

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference55 articles.

1. A compositional link between rocky exoplanets and their host stars

2. Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides

3. Using deep neural networks to compute the mass of forming planets

4. Ardizzone L., Kruse J., Rother C., & Köthe U. 2019a, in International Conference on Learning Representations

5. Ardizzone L., Lüth C., Kruse J., Rother C., & Köthe U. 2019b, ArXiv [arXiv:1907.02392]

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3