Convective inhibition with an ocean

Author:

Markham S.,Guillot T.,Stevenson D.

Abstract

Aims.In this work we generalize the notion of convective inhibition to apply it to cases where there is an infinite reservoir of condensible species (i.e., an ocean). We propose a new model for the internal structure and thermal evolution of super-Earths with hydrogen envelopes.Methods.We derive the criterion for convective inhibition in a generalized phase mixture from first principles thermodynamics. We then investigate the global ocean case using a water-hydrogen system, for which we have data, as an example. After illustrating the relevant thermodynamics, we extend our arguments to apply to a system of hydrogen and silicate vapor. We then employ a simple atmospheric model to apply our findings to super-Earths and to make predictions about their internal structures and thermal evolution.Results.For hydrogen envelope masses roughly in the range 10−3−10−1M, convective contact between the envelope and core may shut down because of the compositional gradient that arises from silicate partial vaporization. For envelope hydrogen masses that cause the associated basal pressure to exceed the critical pressure of pure silicate (on the order of a couple kilobars), the base of that envelope and the top of the core lie on the critical line of the two-phase hydrogen-silicate phase diagram. The corresponding temperature is much higher than convective models would suggest. The core is then “supercritical” in the sense that the temperature exceeds the critical temperature for pure silicate. The core then cools inefficiently, with intrinsic heat fluxes potentially comparable to the Earth’s internal heat flux today.Conclusions.This low heat flux may allow the core to remain in a high entropy supercritical state for billions of years, but the details of this depend on the nature of the two-component phase diagram at high pressure, something that is currently unknown. A supercritical core thermodynamically permits the dissolution of large quantities of hydrogen into the core.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3